| 1 | gezelter | 507 | /* | 
| 2 | gezelter | 246 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Acknowledgement of the program authors must be made in any | 
| 10 |  |  | *    publication of scientific results based in part on use of the | 
| 11 |  |  | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 |  |  | *    the article in which the program was described (Matthew | 
| 13 |  |  | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 |  |  | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 |  |  | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 |  |  | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 |  |  | * | 
| 18 |  |  | * 2. Redistributions of source code must retain the above copyright | 
| 19 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 20 |  |  | * | 
| 21 |  |  | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 23 |  |  | *    documentation and/or other materials provided with the | 
| 24 |  |  | *    distribution. | 
| 25 |  |  | * | 
| 26 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 27 |  |  | * kind. All express or implied conditions, representations and | 
| 28 |  |  | * warranties, including any implied warranty of merchantability, | 
| 29 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 32 |  |  | * using, modifying or distributing the software or its | 
| 33 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 34 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 36 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 37 |  |  | * arising out of the use of or inability to use software, even if the | 
| 38 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 39 |  |  | * such damages. | 
| 40 |  |  | */ | 
| 41 |  |  |  | 
| 42 |  |  | #include "primitives/Torsion.hpp" | 
| 43 | gezelter | 2 |  | 
| 44 | gezelter | 246 | namespace oopse { | 
| 45 | gezelter | 2 |  | 
| 46 | gezelter | 507 | Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, | 
| 47 |  |  | TorsionType *tt) : | 
| 48 | gezelter | 246 | atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } | 
| 49 | gezelter | 2 |  | 
| 50 | gezelter | 507 | void Torsion::calcForce() { | 
| 51 | gezelter | 246 | Vector3d pos1 = atom1_->getPos(); | 
| 52 |  |  | Vector3d pos2 = atom2_->getPos(); | 
| 53 |  |  | Vector3d pos3 = atom3_->getPos(); | 
| 54 |  |  | Vector3d pos4 = atom4_->getPos(); | 
| 55 | gezelter | 2 |  | 
| 56 | gezelter | 246 | Vector3d r21 = pos1 - pos2; | 
| 57 |  |  | Vector3d r32 = pos2 - pos3; | 
| 58 |  |  | Vector3d r43 = pos3 - pos4; | 
| 59 | gezelter | 2 |  | 
| 60 | gezelter | 246 | //  Calculate the cross products and distances | 
| 61 |  |  | Vector3d A = cross(r21, r32); | 
| 62 |  |  | double rA = A.length(); | 
| 63 |  |  | Vector3d B = cross(r32, r43); | 
| 64 |  |  | double rB = B.length(); | 
| 65 |  |  | Vector3d C = cross(r32, A); | 
| 66 |  |  | double rC = C.length(); | 
| 67 | gezelter | 2 |  | 
| 68 | gezelter | 246 | A.normalize(); | 
| 69 |  |  | B.normalize(); | 
| 70 |  |  | C.normalize(); | 
| 71 |  |  |  | 
| 72 |  |  | //  Calculate the sin and cos | 
| 73 |  |  | double cos_phi = dot(A, B) ; | 
| 74 |  |  | double sin_phi = dot(C, B); | 
| 75 | gezelter | 2 |  | 
| 76 | gezelter | 246 | double dVdPhi; | 
| 77 |  |  | torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); | 
| 78 | gezelter | 2 |  | 
| 79 | gezelter | 246 | Vector3d f1; | 
| 80 |  |  | Vector3d f2; | 
| 81 |  |  | Vector3d f3; | 
| 82 | gezelter | 2 |  | 
| 83 | gezelter | 246 | //  Next, we want to calculate the forces.  In order | 
| 84 |  |  | //  to do that, we first need to figure out whether the | 
| 85 |  |  | //  sin or cos form will be more stable.  For this, | 
| 86 |  |  | //  just look at the value of phi | 
| 87 |  |  | //if (fabs(sin_phi) > 0.1) { | 
| 88 | gezelter | 507 | //  use the sin version to avoid 1/cos terms | 
| 89 | gezelter | 2 |  | 
| 90 | gezelter | 507 | Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 91 |  |  | Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 92 | gezelter | 2 |  | 
| 93 | gezelter | 507 | double dVdcosPhi = -dVdPhi / sin_phi; | 
| 94 | gezelter | 2 |  | 
| 95 | gezelter | 507 | f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 96 |  |  | f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 97 |  |  | f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 98 | gezelter | 2 |  | 
| 99 | gezelter | 246 | /** @todo fix below block, must be something wrong with the sign somewhere */ | 
| 100 |  |  | //} else { | 
| 101 | gezelter | 507 | //  This angle is closer to 0 or 180 than it is to | 
| 102 |  |  | //  90, so use the cos version to avoid 1/sin terms | 
| 103 | gezelter | 2 |  | 
| 104 | gezelter | 507 | //double dVdsinPhi = dVdPhi /cos_phi; | 
| 105 |  |  | //Vector3d dsindB = (sin_phi * B - C) /rB; | 
| 106 |  |  | //Vector3d dsindC = (sin_phi * C - B) /rC; | 
| 107 | gezelter | 2 |  | 
| 108 | gezelter | 507 | //f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); | 
| 109 | gezelter | 2 |  | 
| 110 | gezelter | 507 | //f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); | 
| 111 | gezelter | 2 |  | 
| 112 | gezelter | 507 | //f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); | 
| 113 | gezelter | 2 |  | 
| 114 | gezelter | 507 | //f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() | 
| 115 |  |  | //+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); | 
| 116 | gezelter | 2 |  | 
| 117 | gezelter | 507 | //f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() | 
| 118 |  |  | //+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); | 
| 119 | gezelter | 2 |  | 
| 120 | gezelter | 507 | //f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() | 
| 121 |  |  | //+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); | 
| 122 | gezelter | 2 |  | 
| 123 | gezelter | 507 | //f3 = dVdsinPhi * cross(r32, dsindB); | 
| 124 | gezelter | 2 |  | 
| 125 | gezelter | 246 | //} | 
| 126 | gezelter | 2 |  | 
| 127 | gezelter | 246 | atom1_->addFrc(f1); | 
| 128 |  |  | atom2_->addFrc(f2 - f1); | 
| 129 |  |  | atom3_->addFrc(f3 - f2); | 
| 130 |  |  | atom4_->addFrc(-f3); | 
| 131 | gezelter | 507 | } | 
| 132 | gezelter | 2 |  | 
| 133 |  |  | } |