# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include "SRI.hpp" |
2 | < | #include "Atom.hpp" |
3 | < | #include <math.h> |
4 | < | #include <iostream> |
5 | < | #include <stdlib.h> |
1 | > | /* |
2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 | > | * |
4 | > | * The University of Notre Dame grants you ("Licensee") a |
5 | > | * non-exclusive, royalty free, license to use, modify and |
6 | > | * redistribute this software in source and binary code form, provided |
7 | > | * that the following conditions are met: |
8 | > | * |
9 | > | * 1. Acknowledgement of the program authors must be made in any |
10 | > | * publication of scientific results based in part on use of the |
11 | > | * program. An acceptable form of acknowledgement is citation of |
12 | > | * the article in which the program was described (Matthew |
13 | > | * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 | > | * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 | > | * Parallel Simulation Engine for Molecular Dynamics," |
16 | > | * J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 | > | * |
18 | > | * 2. Redistributions of source code must retain the above copyright |
19 | > | * notice, this list of conditions and the following disclaimer. |
20 | > | * |
21 | > | * 3. Redistributions in binary form must reproduce the above copyright |
22 | > | * notice, this list of conditions and the following disclaimer in the |
23 | > | * documentation and/or other materials provided with the |
24 | > | * distribution. |
25 | > | * |
26 | > | * This software is provided "AS IS," without a warranty of any |
27 | > | * kind. All express or implied conditions, representations and |
28 | > | * warranties, including any implied warranty of merchantability, |
29 | > | * fitness for a particular purpose or non-infringement, are hereby |
30 | > | * excluded. The University of Notre Dame and its licensors shall not |
31 | > | * be liable for any damages suffered by licensee as a result of |
32 | > | * using, modifying or distributing the software or its |
33 | > | * derivatives. In no event will the University of Notre Dame or its |
34 | > | * licensors be liable for any lost revenue, profit or data, or for |
35 | > | * direct, indirect, special, consequential, incidental or punitive |
36 | > | * damages, however caused and regardless of the theory of liability, |
37 | > | * arising out of the use of or inability to use software, even if the |
38 | > | * University of Notre Dame has been advised of the possibility of |
39 | > | * such damages. |
40 | > | */ |
41 | > | |
42 | > | #include "primitives/Torsion.hpp" |
43 | ||
44 | < | void Torsion::set_atoms( Atom &a, Atom &b, Atom &c, Atom &d){ |
8 | < | c_p_a = &a; |
9 | < | c_p_b = &b; |
10 | < | c_p_c = &c; |
11 | < | c_p_d = &d; |
12 | < | } |
44 | > | namespace oopse { |
45 | ||
46 | + | Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, |
47 | + | TorsionType *tt) : |
48 | + | atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } |
49 | ||
50 | < | void Torsion::calc_forces(){ |
51 | < | |
52 | < | /********************************************************************** |
53 | < | * |
54 | < | * initialize vectors |
20 | < | * |
21 | < | ***********************************************************************/ |
22 | < | |
23 | < | vect r_ab; /* the vector whose origin is a and end is b */ |
24 | < | vect r_cb; /* the vector whose origin is c and end is b */ |
25 | < | vect r_cd; /* the vector whose origin is c and end is b */ |
26 | < | vect r_cr1; /* the cross product of r_ab and r_cb */ |
27 | < | vect r_cr2; /* the cross product of r_cb and r_cd */ |
50 | > | void Torsion::calcForce() { |
51 | > | Vector3d pos1 = atom1_->getPos(); |
52 | > | Vector3d pos2 = atom2_->getPos(); |
53 | > | Vector3d pos3 = atom3_->getPos(); |
54 | > | Vector3d pos4 = atom4_->getPos(); |
55 | ||
56 | < | double r_cr1_x2; /* the components of r_cr1 squared */ |
57 | < | double r_cr1_y2; |
58 | < | double r_cr1_z2; |
32 | < | |
33 | < | double r_cr2_x2; /* the components of r_cr2 squared */ |
34 | < | double r_cr2_y2; |
35 | < | double r_cr2_z2; |
56 | > | Vector3d r21 = pos1 - pos2; |
57 | > | Vector3d r32 = pos2 - pos3; |
58 | > | Vector3d r43 = pos3 - pos4; |
59 | ||
60 | < | double r_cr1_sqr; /* the length of r_cr1 squared */ |
61 | < | double r_cr2_sqr; /* the length of r_cr2 squared */ |
62 | < | |
63 | < | double r_cr1_r_cr2; /* the length of r_cr1 * length of r_cr2 */ |
64 | < | |
65 | < | double aR[3], bR[3], cR[3], dR[3]; |
66 | < | double aF[3], bF[3], cF[3], dF[3]; |
60 | > | // Calculate the cross products and distances |
61 | > | Vector3d A = cross(r21, r32); |
62 | > | double rA = A.length(); |
63 | > | Vector3d B = cross(r32, r43); |
64 | > | double rB = B.length(); |
65 | > | Vector3d C = cross(r32, A); |
66 | > | double rC = C.length(); |
67 | ||
68 | < | c_p_a->getPos( aR ); |
69 | < | c_p_b->getPos( bR ); |
70 | < | c_p_c->getPos( cR ); |
71 | < | c_p_d->getPos( dR ); |
68 | > | A.normalize(); |
69 | > | B.normalize(); |
70 | > | C.normalize(); |
71 | > | |
72 | > | // Calculate the sin and cos |
73 | > | double cos_phi = dot(A, B) ; |
74 | > | double sin_phi = dot(C, B); |
75 | ||
76 | < | r_ab.x = bR[0] - aR[0]; |
77 | < | r_ab.y = bR[1] - aR[1]; |
52 | < | r_ab.z = bR[2] - aR[2]; |
53 | < | r_ab.length = sqrt((r_ab.x * r_ab.x + r_ab.y * r_ab.y + r_ab.z * r_ab.z)); |
76 | > | double dVdPhi; |
77 | > | torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); |
78 | ||
79 | < | r_cb.x = bR[0] - cR[0]; |
80 | < | r_cb.y = bR[1] - cR[1]; |
81 | < | r_cb.z = bR[2] - cR[2]; |
58 | < | r_cb.length = sqrt((r_cb.x * r_cb.x + r_cb.y * r_cb.y + r_cb.z * r_cb.z)); |
79 | > | Vector3d f1; |
80 | > | Vector3d f2; |
81 | > | Vector3d f3; |
82 | ||
83 | < | r_cd.x = dR[0] - cR[0]; |
84 | < | r_cd.y = dR[1] - cR[1]; |
85 | < | r_cd.z = dR[2] - cR[2]; |
86 | < | r_cd.length = sqrt((r_cd.x * r_cd.x + r_cd.y * r_cd.y + r_cd.z * r_cd.z)); |
83 | > | // Next, we want to calculate the forces. In order |
84 | > | // to do that, we first need to figure out whether the |
85 | > | // sin or cos form will be more stable. For this, |
86 | > | // just look at the value of phi |
87 | > | //if (fabs(sin_phi) > 0.1) { |
88 | > | // use the sin version to avoid 1/cos terms |
89 | ||
90 | < | r_cr1.x = r_ab.y * r_cb.z - r_cb.y * r_ab.z; |
91 | < | r_cr1.y = r_ab.z * r_cb.x - r_cb.z * r_ab.x; |
67 | < | r_cr1.z = r_ab.x * r_cb.y - r_cb.x * r_ab.y; |
68 | < | r_cr1_x2 = r_cr1.x * r_cr1.x; |
69 | < | r_cr1_y2 = r_cr1.y * r_cr1.y; |
70 | < | r_cr1_z2 = r_cr1.z * r_cr1.z; |
71 | < | r_cr1_sqr = r_cr1_x2 + r_cr1_y2 + r_cr1_z2; |
72 | < | r_cr1.length = sqrt(r_cr1_sqr); |
90 | > | Vector3d dcosdA = (cos_phi * A - B) /rA; |
91 | > | Vector3d dcosdB = (cos_phi * B - A) /rB; |
92 | ||
93 | < | r_cr2.x = r_cb.y * r_cd.z - r_cd.y * r_cb.z; |
75 | < | r_cr2.y = r_cb.z * r_cd.x - r_cd.z * r_cb.x; |
76 | < | r_cr2.z = r_cb.x * r_cd.y - r_cd.x * r_cb.y; |
77 | < | r_cr2_x2 = r_cr2.x * r_cr2.x; |
78 | < | r_cr2_y2 = r_cr2.y * r_cr2.y; |
79 | < | r_cr2_z2 = r_cr2.z * r_cr2.z; |
80 | < | r_cr2_sqr = r_cr2_x2 + r_cr2_y2 + r_cr2_z2; |
81 | < | r_cr2.length = sqrt(r_cr2_sqr); |
93 | > | double dVdcosPhi = -dVdPhi / sin_phi; |
94 | ||
95 | < | r_cr1_r_cr2 = r_cr1.length * r_cr2.length; |
95 | > | f1 = dVdcosPhi * cross(r32, dcosdA); |
96 | > | f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); |
97 | > | f3 = dVdcosPhi * cross(dcosdB, r32); |
98 | ||
99 | < | /********************************************************************** |
100 | < | * |
101 | < | * dot product and angle calculations |
102 | < | * |
89 | < | ***********************************************************************/ |
90 | < | |
91 | < | double cr1_dot_cr2; /* the dot product of the cr1 and cr2 vectors */ |
92 | < | double cos_phi; /* the cosine of the torsion angle */ |
99 | > | /** @todo fix below block, must be something wrong with the sign somewhere */ |
100 | > | //} else { |
101 | > | // This angle is closer to 0 or 180 than it is to |
102 | > | // 90, so use the cos version to avoid 1/sin terms |
103 | ||
104 | < | cr1_dot_cr2 = r_cr1.x * r_cr2.x + r_cr1.y * r_cr2.y + r_cr1.z * r_cr2.z; |
105 | < | |
106 | < | cos_phi = cr1_dot_cr2 / r_cr1_r_cr2; |
97 | < | |
98 | < | /* adjust for the granularity of the numbers for angles near 0 or pi */ |
104 | > | //double dVdsinPhi = dVdPhi /cos_phi; |
105 | > | //Vector3d dsindB = (sin_phi * B - C) /rB; |
106 | > | //Vector3d dsindC = (sin_phi * C - B) /rC; |
107 | ||
108 | < | if(cos_phi > 1.0) cos_phi = 1.0; |
101 | < | if(cos_phi < -1.0) cos_phi = -1.0; |
108 | > | //f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); |
109 | ||
110 | + | //f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); |
111 | ||
112 | < | /******************************************************************** |
105 | < | * |
106 | < | * This next section calculates derivatives needed for the force |
107 | < | * calculation |
108 | < | * |
109 | < | ********************************************************************/ |
112 | > | //f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); |
113 | ||
114 | + | //f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() |
115 | + | //+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); |
116 | ||
117 | < | /* the derivatives of cos phi with respect to the x, y, |
118 | < | and z components of vectors cr1 and cr2. */ |
114 | < | double d_cos_dx_cr1; |
115 | < | double d_cos_dy_cr1; |
116 | < | double d_cos_dz_cr1; |
117 | < | double d_cos_dx_cr2; |
118 | < | double d_cos_dy_cr2; |
119 | < | double d_cos_dz_cr2; |
117 | > | //f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() |
118 | > | //+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); |
119 | ||
120 | < | d_cos_dx_cr1 = r_cr2.x / r_cr1_r_cr2 - (cos_phi * r_cr1.x) / r_cr1_sqr; |
121 | < | d_cos_dy_cr1 = r_cr2.y / r_cr1_r_cr2 - (cos_phi * r_cr1.y) / r_cr1_sqr; |
123 | < | d_cos_dz_cr1 = r_cr2.z / r_cr1_r_cr2 - (cos_phi * r_cr1.z) / r_cr1_sqr; |
120 | > | //f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() |
121 | > | //+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); |
122 | ||
123 | < | d_cos_dx_cr2 = r_cr1.x / r_cr1_r_cr2 - (cos_phi * r_cr2.x) / r_cr2_sqr; |
126 | < | d_cos_dy_cr2 = r_cr1.y / r_cr1_r_cr2 - (cos_phi * r_cr2.y) / r_cr2_sqr; |
127 | < | d_cos_dz_cr2 = r_cr1.z / r_cr1_r_cr2 - (cos_phi * r_cr2.z) / r_cr2_sqr; |
123 | > | //f3 = dVdsinPhi * cross(r32, dsindB); |
124 | ||
125 | < | /*********************************************************************** |
130 | < | * |
131 | < | * Calculate the actual forces and place them in the atoms. |
132 | < | * |
133 | < | ***********************************************************************/ |
125 | > | //} |
126 | ||
127 | < | double force; /*the force scaling factor */ |
127 | > | atom1_->addFrc(f1); |
128 | > | atom2_->addFrc(f2 - f1); |
129 | > | atom3_->addFrc(f3 - f2); |
130 | > | atom4_->addFrc(-f3); |
131 | > | } |
132 | ||
137 | – | force = torsion_force(cos_phi); |
138 | – | |
139 | – | aF[0] = force * (d_cos_dy_cr1 * r_cb.z - d_cos_dz_cr1 * r_cb.y); |
140 | – | aF[1] = force * (d_cos_dz_cr1 * r_cb.x - d_cos_dx_cr1 * r_cb.z); |
141 | – | aF[2] = force * (d_cos_dx_cr1 * r_cb.y - d_cos_dy_cr1 * r_cb.x); |
142 | – | |
143 | – | bF[0] = force * ( d_cos_dy_cr1 * (r_ab.z - r_cb.z) |
144 | – | - d_cos_dy_cr2 * r_cd.z |
145 | – | + d_cos_dz_cr1 * (r_cb.y - r_ab.y) |
146 | – | + d_cos_dz_cr2 * r_cd.y); |
147 | – | bF[1] = force * ( d_cos_dx_cr1 * (r_cb.z - r_ab.z) |
148 | – | + d_cos_dx_cr2 * r_cd.z |
149 | – | + d_cos_dz_cr1 * (r_ab.x - r_cb.x) |
150 | – | - d_cos_dz_cr2 * r_cd.x); |
151 | – | bF[2] = force * ( d_cos_dx_cr1 * (r_ab.y - r_cb.y) |
152 | – | - d_cos_dx_cr2 * r_cd.y |
153 | – | + d_cos_dy_cr1 * (r_cb.x - r_ab.x) |
154 | – | + d_cos_dy_cr2 * r_cd.x); |
155 | – | |
156 | – | cF[0] = force * (- d_cos_dy_cr1 * r_ab.z |
157 | – | - d_cos_dy_cr2 * (r_cb.z - r_cd.z) |
158 | – | + d_cos_dz_cr1 * r_ab.y |
159 | – | - d_cos_dz_cr2 * (r_cd.y - r_cb.y)); |
160 | – | cF[1] = force * ( d_cos_dx_cr1 * r_ab.z |
161 | – | - d_cos_dx_cr2 * (r_cd.z - r_cb.z) |
162 | – | - d_cos_dz_cr1 * r_ab.x |
163 | – | - d_cos_dz_cr2 * (r_cb.x - r_cd.x)); |
164 | – | cF[2] = force * (- d_cos_dx_cr1 * r_ab.y |
165 | – | - d_cos_dx_cr2 * (r_cb.y - r_cd.y) |
166 | – | + d_cos_dy_cr1 * r_ab.x |
167 | – | - d_cos_dy_cr2 * (r_cd.x - r_cb.x)); |
168 | – | |
169 | – | dF[0] = force * (d_cos_dy_cr2 * r_cb.z - d_cos_dz_cr2 * r_cb.y); |
170 | – | dF[1] = force * (d_cos_dz_cr2 * r_cb.x - d_cos_dx_cr2 * r_cb.z); |
171 | – | dF[2] = force * (d_cos_dx_cr2 * r_cb.y - d_cos_dy_cr2 * r_cb.x); |
172 | – | |
173 | – | |
174 | – | c_p_a->addFrc(aF); |
175 | – | c_p_b->addFrc(bF); |
176 | – | c_p_c->addFrc(cF); |
177 | – | c_p_d->addFrc(dF); |
133 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |