| 47 | 
  | 
                   TorsionType *tt) : | 
| 48 | 
  | 
    atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } | 
| 49 | 
  | 
 | 
| 50 | 
< | 
  void Torsion::calcForce() { | 
| 50 | 
> | 
  void Torsion::calcForce(double& angle) { | 
| 51 | 
> | 
 | 
| 52 | 
  | 
    Vector3d pos1 = atom1_->getPos(); | 
| 53 | 
  | 
    Vector3d pos2 = atom2_->getPos(); | 
| 54 | 
  | 
    Vector3d pos3 = atom3_->getPos(); | 
| 72 | 
  | 
     | 
| 73 | 
  | 
    //  Calculate the sin and cos | 
| 74 | 
  | 
    double cos_phi = dot(A, B) ; | 
| 75 | 
< | 
    double sin_phi = dot(C, B); | 
| 75 | 
> | 
    if (cos_phi > 1.0) cos_phi = 1.0; | 
| 76 | 
> | 
    if (cos_phi < -1.0) cos_phi = -1.0;  | 
| 77 | 
  | 
 | 
| 78 | 
< | 
    double dVdPhi; | 
| 79 | 
< | 
    torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); | 
| 78 | 
< | 
 | 
| 78 | 
> | 
    double dVdcosPhi; | 
| 79 | 
> | 
    torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 80 | 
  | 
    Vector3d f1; | 
| 81 | 
  | 
    Vector3d f2; | 
| 82 | 
  | 
    Vector3d f3; | 
| 83 | 
  | 
 | 
| 83 | 
– | 
    if (fabs(sin_phi) > 0.5) { | 
| 84 | 
– | 
    //use the sin version to  prevent potential singularities | 
| 85 | 
– | 
 | 
| 84 | 
  | 
    Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 85 | 
  | 
    Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 86 | 
  | 
 | 
| 89 | 
– | 
    double dVdcosPhi = -dVdPhi / sin_phi; | 
| 90 | 
– | 
 | 
| 87 | 
  | 
    f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 88 | 
  | 
    f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 89 | 
  | 
    f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 90 | 
< | 
 | 
| 95 | 
< | 
    } else { | 
| 96 | 
< | 
    //use the cos version to  prevent potential singularities | 
| 97 | 
< | 
 | 
| 98 | 
< | 
    double dVdsinPhi = dVdPhi /cos_phi; | 
| 99 | 
< | 
    Vector3d dsindB = (sin_phi * B - C) /rB; | 
| 100 | 
< | 
    Vector3d dsindC = (sin_phi * C - B) /rC; | 
| 101 | 
< | 
 | 
| 102 | 
< | 
    f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); | 
| 103 | 
< | 
 | 
| 104 | 
< | 
    f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); | 
| 105 | 
< | 
 | 
| 106 | 
< | 
    f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); | 
| 107 | 
< | 
 | 
| 108 | 
< | 
    f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() | 
| 109 | 
< | 
    + (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); | 
| 110 | 
< | 
 | 
| 111 | 
< | 
    f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() | 
| 112 | 
< | 
    + (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); | 
| 113 | 
< | 
 | 
| 114 | 
< | 
    f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() | 
| 115 | 
< | 
    +(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); | 
| 116 | 
< | 
 | 
| 117 | 
< | 
    f3 = dVdsinPhi * cross(dsindB, r32); | 
| 118 | 
< | 
    } | 
| 119 | 
< | 
 | 
| 90 | 
> | 
     | 
| 91 | 
  | 
    atom1_->addFrc(f1); | 
| 92 | 
  | 
    atom2_->addFrc(f2 - f1); | 
| 93 | 
  | 
    atom3_->addFrc(f3 - f2); | 
| 94 | 
  | 
    atom4_->addFrc(-f3); | 
| 95 | 
+ | 
    angle = acos(cos_phi) /M_PI * 180.0; | 
| 96 | 
  | 
  } | 
| 97 | 
  | 
 | 
| 98 | 
  | 
} |