| 63 | 
  | 
    RealType rA = A.length(); | 
| 64 | 
  | 
    Vector3d B = cross(r32, r43); | 
| 65 | 
  | 
    RealType rB = B.length(); | 
| 66 | 
– | 
    Vector3d C = cross(r32, A); | 
| 67 | 
– | 
    RealType rC = C.length(); | 
| 66 | 
  | 
 | 
| 67 | 
+ | 
    /*  | 
| 68 | 
+ | 
       If either of the two cross product vectors is tiny, that means | 
| 69 | 
+ | 
       the three atoms involved are colinear, and the torsion angle is | 
| 70 | 
+ | 
       going to be undefined.  The easiest check for this problem is | 
| 71 | 
+ | 
       to use the product of the two lengths. | 
| 72 | 
+ | 
    */ | 
| 73 | 
+ | 
    if (rA * rB < OpenMD::epsilon) return; | 
| 74 | 
+ | 
     | 
| 75 | 
  | 
    A.normalize(); | 
| 76 | 
< | 
    B.normalize(); | 
| 71 | 
< | 
    C.normalize(); | 
| 76 | 
> | 
    B.normalize();   | 
| 77 | 
  | 
     | 
| 78 | 
  | 
    //  Calculate the sin and cos | 
| 79 | 
  | 
    RealType cos_phi = dot(A, B) ; | 
| 80 | 
  | 
    if (cos_phi > 1.0) cos_phi = 1.0; | 
| 81 | 
  | 
    if (cos_phi < -1.0) cos_phi = -1.0;  | 
| 82 | 
< | 
 | 
| 82 | 
> | 
     | 
| 83 | 
  | 
    RealType dVdcosPhi; | 
| 84 | 
  | 
    torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 85 | 
  | 
    Vector3d f1 ; | 
| 86 | 
  | 
    Vector3d f2 ; | 
| 87 | 
  | 
    Vector3d f3 ; | 
| 88 | 
< | 
 | 
| 88 | 
> | 
     | 
| 89 | 
  | 
    Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 90 | 
  | 
    Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 91 | 
< | 
 | 
| 91 | 
> | 
     | 
| 92 | 
  | 
    f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 93 | 
  | 
    f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 94 | 
  | 
    f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 97 | 
  | 
    atom2_->addFrc(f2 - f1); | 
| 98 | 
  | 
    atom3_->addFrc(f3 - f2); | 
| 99 | 
  | 
    atom4_->addFrc(-f3); | 
| 100 | 
< | 
 | 
| 100 | 
> | 
     | 
| 101 | 
  | 
    atom1_->addParticlePot(potential_); | 
| 102 | 
  | 
    atom2_->addParticlePot(potential_); | 
| 103 | 
  | 
    atom3_->addParticlePot(potential_); | 
| 104 | 
  | 
    atom4_->addParticlePot(potential_); | 
| 105 | 
< | 
 | 
| 106 | 
< | 
    angle = acos(cos_phi) /M_PI * 180.0; | 
| 107 | 
< | 
  } | 
| 103 | 
< | 
 | 
| 105 | 
> | 
     | 
| 106 | 
> | 
    angle = acos(cos_phi) /M_PI * 180.0;     | 
| 107 | 
> | 
  }   | 
| 108 | 
  | 
} |