| 1 | 
#include "SRI.hpp" | 
| 2 | 
#include "Atom.hpp" | 
| 3 | 
#include <math.h> | 
| 4 | 
#include <iostream> | 
| 5 | 
#include <stdlib.h> | 
| 6 | 
 | 
| 7 | 
void Torsion::set_atoms( Atom &a, Atom &b, Atom &c, Atom &d){ | 
| 8 | 
  c_p_a = &a; | 
| 9 | 
  c_p_b = &b; | 
| 10 | 
  c_p_c = &c; | 
| 11 | 
  c_p_d = &d; | 
| 12 | 
} | 
| 13 | 
 | 
| 14 | 
 | 
| 15 | 
void Torsion::calc_forces(){ | 
| 16 | 
   | 
| 17 | 
  /********************************************************************** | 
| 18 | 
   *  | 
| 19 | 
   * initialize vectors | 
| 20 | 
   * | 
| 21 | 
   ***********************************************************************/ | 
| 22 | 
   | 
| 23 | 
  vect r_ab; /* the vector whose origin is a and end is b */ | 
| 24 | 
  vect r_cb; /* the vector whose origin is c and end is b */ | 
| 25 | 
  vect r_cd; /* the vector whose origin is c and end is b */ | 
| 26 | 
  vect r_cr1; /* the cross product of r_ab and r_cb */ | 
| 27 | 
  vect r_cr2; /* the cross product of r_cb and r_cd */ | 
| 28 | 
 | 
| 29 | 
  double r_cr1_x2; /* the components of r_cr1 squared */ | 
| 30 | 
  double r_cr1_y2; | 
| 31 | 
  double r_cr1_z2; | 
| 32 | 
   | 
| 33 | 
  double r_cr2_x2; /* the components of r_cr2 squared */ | 
| 34 | 
  double r_cr2_y2; | 
| 35 | 
  double r_cr2_z2; | 
| 36 | 
 | 
| 37 | 
  double r_cr1_sqr; /* the length of r_cr1 squared */ | 
| 38 | 
  double r_cr2_sqr; /* the length of r_cr2 squared */ | 
| 39 | 
   | 
| 40 | 
  double r_cr1_r_cr2; /* the length of r_cr1 * length of r_cr2 */ | 
| 41 | 
   | 
| 42 | 
  double aR[3], bR[3], cR[3], dR[3]; | 
| 43 | 
  double aF[3], bF[3], cF[3], dF[3]; | 
| 44 | 
 | 
| 45 | 
  c_p_a->getPos( aR ); | 
| 46 | 
  c_p_b->getPos( bR ); | 
| 47 | 
  c_p_c->getPos( cR ); | 
| 48 | 
  c_p_d->getPos( dR ); | 
| 49 | 
 | 
| 50 | 
  r_ab.x = bR[0] - aR[0]; | 
| 51 | 
  r_ab.y = bR[1] - aR[1]; | 
| 52 | 
  r_ab.z = bR[2] - aR[2]; | 
| 53 | 
  r_ab.length  = sqrt((r_ab.x * r_ab.x + r_ab.y * r_ab.y + r_ab.z * r_ab.z)); | 
| 54 | 
 | 
| 55 | 
  r_cb.x = bR[0] - cR[0]; | 
| 56 | 
  r_cb.y = bR[1] - cR[1]; | 
| 57 | 
  r_cb.z = bR[2] - cR[2]; | 
| 58 | 
  r_cb.length = sqrt((r_cb.x * r_cb.x + r_cb.y * r_cb.y + r_cb.z * r_cb.z)); | 
| 59 | 
 | 
| 60 | 
  r_cd.x = dR[0] - cR[0]; | 
| 61 | 
  r_cd.y = dR[1] - cR[1]; | 
| 62 | 
  r_cd.z = dR[2] - cR[2]; | 
| 63 | 
  r_cd.length = sqrt((r_cd.x * r_cd.x + r_cd.y * r_cd.y + r_cd.z * r_cd.z)); | 
| 64 | 
 | 
| 65 | 
  r_cr1.x = r_ab.y * r_cb.z - r_cb.y * r_ab.z; | 
| 66 | 
  r_cr1.y = r_ab.z * r_cb.x - r_cb.z * r_ab.x; | 
| 67 | 
  r_cr1.z = r_ab.x * r_cb.y - r_cb.x * r_ab.y; | 
| 68 | 
  r_cr1_x2 = r_cr1.x * r_cr1.x; | 
| 69 | 
  r_cr1_y2 = r_cr1.y * r_cr1.y; | 
| 70 | 
  r_cr1_z2 = r_cr1.z * r_cr1.z; | 
| 71 | 
  r_cr1_sqr = r_cr1_x2 + r_cr1_y2 + r_cr1_z2; | 
| 72 | 
  r_cr1.length = sqrt(r_cr1_sqr); | 
| 73 | 
 | 
| 74 | 
  r_cr2.x = r_cb.y * r_cd.z - r_cd.y * r_cb.z; | 
| 75 | 
  r_cr2.y = r_cb.z * r_cd.x - r_cd.z * r_cb.x; | 
| 76 | 
  r_cr2.z = r_cb.x * r_cd.y - r_cd.x * r_cb.y; | 
| 77 | 
  r_cr2_x2 = r_cr2.x * r_cr2.x; | 
| 78 | 
  r_cr2_y2 = r_cr2.y * r_cr2.y; | 
| 79 | 
  r_cr2_z2 = r_cr2.z * r_cr2.z; | 
| 80 | 
  r_cr2_sqr = r_cr2_x2 + r_cr2_y2 + r_cr2_z2; | 
| 81 | 
  r_cr2.length = sqrt(r_cr2_sqr); | 
| 82 | 
 | 
| 83 | 
  r_cr1_r_cr2 = r_cr1.length * r_cr2.length; | 
| 84 | 
 | 
| 85 | 
  /********************************************************************** | 
| 86 | 
   * | 
| 87 | 
   * dot product and angle calculations  | 
| 88 | 
   * | 
| 89 | 
   ***********************************************************************/ | 
| 90 | 
   | 
| 91 | 
  double cr1_dot_cr2; /* the dot product of the cr1 and cr2 vectors */ | 
| 92 | 
  double cos_phi; /* the cosine of the torsion angle */ | 
| 93 | 
 | 
| 94 | 
  cr1_dot_cr2 = r_cr1.x * r_cr2.x + r_cr1.y * r_cr2.y + r_cr1.z * r_cr2.z; | 
| 95 | 
   | 
| 96 | 
  cos_phi = cr1_dot_cr2 / r_cr1_r_cr2; | 
| 97 | 
   | 
| 98 | 
   /* adjust for the granularity of the numbers for angles near 0 or pi */ | 
| 99 | 
 | 
| 100 | 
  if(cos_phi > 1.0) cos_phi = 1.0; | 
| 101 | 
  if(cos_phi < -1.0) cos_phi = -1.0; | 
| 102 | 
 | 
| 103 | 
 | 
| 104 | 
  /******************************************************************** | 
| 105 | 
   * | 
| 106 | 
   * This next section calculates derivatives needed for the force | 
| 107 | 
   * calculation | 
| 108 | 
   * | 
| 109 | 
   ********************************************************************/ | 
| 110 | 
 | 
| 111 | 
 | 
| 112 | 
  /* the derivatives of cos phi with respect to the x, y, | 
| 113 | 
     and z components of vectors cr1 and cr2. */ | 
| 114 | 
  double d_cos_dx_cr1; | 
| 115 | 
  double d_cos_dy_cr1; | 
| 116 | 
  double d_cos_dz_cr1; | 
| 117 | 
  double d_cos_dx_cr2; | 
| 118 | 
  double d_cos_dy_cr2; | 
| 119 | 
  double d_cos_dz_cr2; | 
| 120 | 
 | 
| 121 | 
  d_cos_dx_cr1 = r_cr2.x / r_cr1_r_cr2 - (cos_phi * r_cr1.x) / r_cr1_sqr; | 
| 122 | 
  d_cos_dy_cr1 = r_cr2.y / r_cr1_r_cr2 - (cos_phi * r_cr1.y) / r_cr1_sqr; | 
| 123 | 
  d_cos_dz_cr1 = r_cr2.z / r_cr1_r_cr2 - (cos_phi * r_cr1.z) / r_cr1_sqr; | 
| 124 | 
 | 
| 125 | 
  d_cos_dx_cr2 = r_cr1.x / r_cr1_r_cr2 - (cos_phi * r_cr2.x) / r_cr2_sqr; | 
| 126 | 
  d_cos_dy_cr2 = r_cr1.y / r_cr1_r_cr2 - (cos_phi * r_cr2.y) / r_cr2_sqr; | 
| 127 | 
  d_cos_dz_cr2 = r_cr1.z / r_cr1_r_cr2 - (cos_phi * r_cr2.z) / r_cr2_sqr; | 
| 128 | 
 | 
| 129 | 
  /*********************************************************************** | 
| 130 | 
   * | 
| 131 | 
   * Calculate the actual forces and place them in the atoms.  | 
| 132 | 
   * | 
| 133 | 
   ***********************************************************************/ | 
| 134 | 
 | 
| 135 | 
  double force; /*the force scaling factor */ | 
| 136 | 
 | 
| 137 | 
  force = torsion_force(cos_phi); | 
| 138 | 
 | 
| 139 | 
  aF[0] = force * (d_cos_dy_cr1 * r_cb.z - d_cos_dz_cr1 * r_cb.y); | 
| 140 | 
  aF[1] = force * (d_cos_dz_cr1 * r_cb.x - d_cos_dx_cr1 * r_cb.z); | 
| 141 | 
  aF[2] = force * (d_cos_dx_cr1 * r_cb.y - d_cos_dy_cr1 * r_cb.x); | 
| 142 | 
 | 
| 143 | 
  bF[0] = force * (  d_cos_dy_cr1 * (r_ab.z - r_cb.z) | 
| 144 | 
                   - d_cos_dy_cr2 *  r_cd.z        | 
| 145 | 
                   + d_cos_dz_cr1 * (r_cb.y - r_ab.y) | 
| 146 | 
                   + d_cos_dz_cr2 *  r_cd.y); | 
| 147 | 
  bF[1] = force * (  d_cos_dx_cr1 * (r_cb.z - r_ab.z) | 
| 148 | 
                   + d_cos_dx_cr2 *  r_cd.z        | 
| 149 | 
                   + d_cos_dz_cr1 * (r_ab.x - r_cb.x) | 
| 150 | 
                   - d_cos_dz_cr2 *  r_cd.x); | 
| 151 | 
  bF[2] = force * (  d_cos_dx_cr1 * (r_ab.y - r_cb.y) | 
| 152 | 
                   - d_cos_dx_cr2 *  r_cd.y        | 
| 153 | 
                   + d_cos_dy_cr1 * (r_cb.x - r_ab.x) | 
| 154 | 
                   + d_cos_dy_cr2 *  r_cd.x); | 
| 155 | 
 | 
| 156 | 
  cF[0] = force * (- d_cos_dy_cr1 *  r_ab.z | 
| 157 | 
                   - d_cos_dy_cr2 * (r_cb.z - r_cd.z) | 
| 158 | 
                   + d_cos_dz_cr1 *  r_ab.y | 
| 159 | 
                   - d_cos_dz_cr2 * (r_cd.y - r_cb.y)); | 
| 160 | 
  cF[1] = force * (  d_cos_dx_cr1 *  r_ab.z | 
| 161 | 
                   - d_cos_dx_cr2 * (r_cd.z - r_cb.z) | 
| 162 | 
                   - d_cos_dz_cr1 *  r_ab.x | 
| 163 | 
                   - d_cos_dz_cr2 * (r_cb.x - r_cd.x)); | 
| 164 | 
  cF[2] = force * (- d_cos_dx_cr1 *  r_ab.y | 
| 165 | 
                   - d_cos_dx_cr2 * (r_cb.y - r_cd.y) | 
| 166 | 
                   + d_cos_dy_cr1 *  r_ab.x | 
| 167 | 
                   - d_cos_dy_cr2 * (r_cd.x - r_cb.x)); | 
| 168 | 
 | 
| 169 | 
  dF[0] = force * (d_cos_dy_cr2 * r_cb.z - d_cos_dz_cr2 * r_cb.y); | 
| 170 | 
  dF[1] = force * (d_cos_dz_cr2 * r_cb.x - d_cos_dx_cr2 * r_cb.z); | 
| 171 | 
  dF[2] = force * (d_cos_dx_cr2 * r_cb.y - d_cos_dy_cr2 * r_cb.x); | 
| 172 | 
 | 
| 173 | 
 | 
| 174 | 
  c_p_a->addFrc(aF); | 
| 175 | 
  c_p_b->addFrc(bF); | 
| 176 | 
  c_p_c->addFrc(cF); | 
| 177 | 
  c_p_d->addFrc(dF); | 
| 178 | 
} |