| 1 | 
< | 
#include "primitives/SRI.hpp" | 
| 2 | 
< | 
#include "primitives/Atom.hpp" | 
| 3 | 
< | 
#include <math.h> | 
| 4 | 
< | 
#include <iostream> | 
| 5 | 
< | 
#include <stdlib.h> | 
| 1 | 
> | 
/* | 
| 2 | 
> | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
> | 
 * | 
| 4 | 
> | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
> | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
> | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
> | 
 * that the following conditions are met: | 
| 8 | 
> | 
 * | 
| 9 | 
> | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
> | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
> | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
> | 
 *    the article in which the program was described (Matthew | 
| 13 | 
> | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
> | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
> | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
> | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
> | 
 * | 
| 18 | 
> | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
> | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
> | 
 * | 
| 21 | 
> | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
> | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
> | 
 *    documentation and/or other materials provided with the | 
| 24 | 
> | 
 *    distribution. | 
| 25 | 
> | 
 * | 
| 26 | 
> | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
> | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
> | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
> | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
> | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
> | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
> | 
 * using, modifying or distributing the software or its | 
| 33 | 
> | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
> | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
> | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
> | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
> | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
> | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
> | 
 * such damages. | 
| 40 | 
> | 
 */ | 
| 41 | 
> | 
  | 
| 42 | 
> | 
#include "primitives/Torsion.hpp" | 
| 43 | 
  | 
 | 
| 44 | 
< | 
void Torsion::set_atoms( Atom &a, Atom &b, Atom &c, Atom &d){ | 
| 8 | 
< | 
  c_p_a = &a; | 
| 9 | 
< | 
  c_p_b = &b; | 
| 10 | 
< | 
  c_p_c = &c; | 
| 11 | 
< | 
  c_p_d = &d; | 
| 12 | 
< | 
} | 
| 44 | 
> | 
namespace oopse { | 
| 45 | 
  | 
 | 
| 46 | 
+ | 
  Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, | 
| 47 | 
+ | 
                   TorsionType *tt) : | 
| 48 | 
+ | 
    atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } | 
| 49 | 
  | 
 | 
| 50 | 
< | 
void Torsion::calc_forces(){ | 
| 51 | 
< | 
   | 
| 52 | 
< | 
  /********************************************************************** | 
| 53 | 
< | 
   *  | 
| 54 | 
< | 
   * initialize vectors | 
| 20 | 
< | 
   * | 
| 21 | 
< | 
   ***********************************************************************/ | 
| 22 | 
< | 
   | 
| 23 | 
< | 
  vect r_ab; /* the vector whose origin is a and end is b */ | 
| 24 | 
< | 
  vect r_cb; /* the vector whose origin is c and end is b */ | 
| 25 | 
< | 
  vect r_cd; /* the vector whose origin is c and end is b */ | 
| 26 | 
< | 
  vect r_cr1; /* the cross product of r_ab and r_cb */ | 
| 27 | 
< | 
  vect r_cr2; /* the cross product of r_cb and r_cd */ | 
| 50 | 
> | 
  void Torsion::calcForce() { | 
| 51 | 
> | 
    Vector3d pos1 = atom1_->getPos(); | 
| 52 | 
> | 
    Vector3d pos2 = atom2_->getPos(); | 
| 53 | 
> | 
    Vector3d pos3 = atom3_->getPos(); | 
| 54 | 
> | 
    Vector3d pos4 = atom4_->getPos(); | 
| 55 | 
  | 
 | 
| 56 | 
< | 
  double r_cr1_x2; /* the components of r_cr1 squared */ | 
| 57 | 
< | 
  double r_cr1_y2; | 
| 58 | 
< | 
  double r_cr1_z2; | 
| 32 | 
< | 
   | 
| 33 | 
< | 
  double r_cr2_x2; /* the components of r_cr2 squared */ | 
| 34 | 
< | 
  double r_cr2_y2; | 
| 35 | 
< | 
  double r_cr2_z2; | 
| 56 | 
> | 
    Vector3d r21 = pos1 - pos2; | 
| 57 | 
> | 
    Vector3d r32 = pos2 - pos3; | 
| 58 | 
> | 
    Vector3d r43 = pos3 - pos4; | 
| 59 | 
  | 
 | 
| 60 | 
< | 
  double r_cr1_sqr; /* the length of r_cr1 squared */ | 
| 61 | 
< | 
  double r_cr2_sqr; /* the length of r_cr2 squared */ | 
| 62 | 
< | 
   | 
| 63 | 
< | 
  double r_cr1_r_cr2; /* the length of r_cr1 * length of r_cr2 */ | 
| 64 | 
< | 
   | 
| 65 | 
< | 
  double aR[3], bR[3], cR[3], dR[3]; | 
| 66 | 
< | 
  double aF[3], bF[3], cF[3], dF[3]; | 
| 60 | 
> | 
    //  Calculate the cross products and distances | 
| 61 | 
> | 
    Vector3d A = cross(r21, r32); | 
| 62 | 
> | 
    double rA = A.length(); | 
| 63 | 
> | 
    Vector3d B = cross(r32, r43); | 
| 64 | 
> | 
    double rB = B.length(); | 
| 65 | 
> | 
    Vector3d C = cross(r32, A); | 
| 66 | 
> | 
    double rC = C.length(); | 
| 67 | 
  | 
 | 
| 68 | 
< | 
  c_p_a->getPos( aR ); | 
| 69 | 
< | 
  c_p_b->getPos( bR ); | 
| 70 | 
< | 
  c_p_c->getPos( cR ); | 
| 71 | 
< | 
  c_p_d->getPos( dR ); | 
| 68 | 
> | 
    A.normalize(); | 
| 69 | 
> | 
    B.normalize(); | 
| 70 | 
> | 
    C.normalize(); | 
| 71 | 
> | 
     | 
| 72 | 
> | 
    //  Calculate the sin and cos | 
| 73 | 
> | 
    double cos_phi = dot(A, B) ; | 
| 74 | 
> | 
    double sin_phi = dot(C, B); | 
| 75 | 
  | 
 | 
| 76 | 
< | 
  r_ab.x = bR[0] - aR[0]; | 
| 77 | 
< | 
  r_ab.y = bR[1] - aR[1]; | 
| 52 | 
< | 
  r_ab.z = bR[2] - aR[2]; | 
| 53 | 
< | 
  r_ab.length  = sqrt((r_ab.x * r_ab.x + r_ab.y * r_ab.y + r_ab.z * r_ab.z)); | 
| 76 | 
> | 
    double dVdPhi; | 
| 77 | 
> | 
    torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); | 
| 78 | 
  | 
 | 
| 79 | 
< | 
  r_cb.x = bR[0] - cR[0]; | 
| 80 | 
< | 
  r_cb.y = bR[1] - cR[1]; | 
| 81 | 
< | 
  r_cb.z = bR[2] - cR[2]; | 
| 58 | 
< | 
  r_cb.length = sqrt((r_cb.x * r_cb.x + r_cb.y * r_cb.y + r_cb.z * r_cb.z)); | 
| 79 | 
> | 
    Vector3d f1; | 
| 80 | 
> | 
    Vector3d f2; | 
| 81 | 
> | 
    Vector3d f3; | 
| 82 | 
  | 
 | 
| 83 | 
< | 
  r_cd.x = dR[0] - cR[0]; | 
| 84 | 
< | 
  r_cd.y = dR[1] - cR[1]; | 
| 85 | 
< | 
  r_cd.z = dR[2] - cR[2]; | 
| 86 | 
< | 
  r_cd.length = sqrt((r_cd.x * r_cd.x + r_cd.y * r_cd.y + r_cd.z * r_cd.z)); | 
| 83 | 
> | 
    //  Next, we want to calculate the forces.  In order | 
| 84 | 
> | 
    //  to do that, we first need to figure out whether the | 
| 85 | 
> | 
    //  sin or cos form will be more stable.  For this, | 
| 86 | 
> | 
    //  just look at the value of phi | 
| 87 | 
> | 
    //if (fabs(sin_phi) > 0.1) { | 
| 88 | 
> | 
    //  use the sin version to avoid 1/cos terms | 
| 89 | 
  | 
 | 
| 90 | 
< | 
  r_cr1.x = r_ab.y * r_cb.z - r_cb.y * r_ab.z; | 
| 91 | 
< | 
  r_cr1.y = r_ab.z * r_cb.x - r_cb.z * r_ab.x; | 
| 67 | 
< | 
  r_cr1.z = r_ab.x * r_cb.y - r_cb.x * r_ab.y; | 
| 68 | 
< | 
  r_cr1_x2 = r_cr1.x * r_cr1.x; | 
| 69 | 
< | 
  r_cr1_y2 = r_cr1.y * r_cr1.y; | 
| 70 | 
< | 
  r_cr1_z2 = r_cr1.z * r_cr1.z; | 
| 71 | 
< | 
  r_cr1_sqr = r_cr1_x2 + r_cr1_y2 + r_cr1_z2; | 
| 72 | 
< | 
  r_cr1.length = sqrt(r_cr1_sqr); | 
| 90 | 
> | 
    Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 91 | 
> | 
    Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 92 | 
  | 
 | 
| 93 | 
< | 
  r_cr2.x = r_cb.y * r_cd.z - r_cd.y * r_cb.z; | 
| 75 | 
< | 
  r_cr2.y = r_cb.z * r_cd.x - r_cd.z * r_cb.x; | 
| 76 | 
< | 
  r_cr2.z = r_cb.x * r_cd.y - r_cd.x * r_cb.y; | 
| 77 | 
< | 
  r_cr2_x2 = r_cr2.x * r_cr2.x; | 
| 78 | 
< | 
  r_cr2_y2 = r_cr2.y * r_cr2.y; | 
| 79 | 
< | 
  r_cr2_z2 = r_cr2.z * r_cr2.z; | 
| 80 | 
< | 
  r_cr2_sqr = r_cr2_x2 + r_cr2_y2 + r_cr2_z2; | 
| 81 | 
< | 
  r_cr2.length = sqrt(r_cr2_sqr); | 
| 93 | 
> | 
    double dVdcosPhi = -dVdPhi / sin_phi; | 
| 94 | 
  | 
 | 
| 95 | 
< | 
  r_cr1_r_cr2 = r_cr1.length * r_cr2.length; | 
| 95 | 
> | 
    f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 96 | 
> | 
    f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 97 | 
> | 
    f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 98 | 
  | 
 | 
| 99 | 
< | 
  /********************************************************************** | 
| 100 | 
< | 
   * | 
| 101 | 
< | 
   * dot product and angle calculations  | 
| 102 | 
< | 
   * | 
| 89 | 
< | 
   ***********************************************************************/ | 
| 90 | 
< | 
   | 
| 91 | 
< | 
  double cr1_dot_cr2; /* the dot product of the cr1 and cr2 vectors */ | 
| 92 | 
< | 
  double cos_phi; /* the cosine of the torsion angle */ | 
| 99 | 
> | 
    /** @todo fix below block, must be something wrong with the sign somewhere */ | 
| 100 | 
> | 
    //} else { | 
| 101 | 
> | 
    //  This angle is closer to 0 or 180 than it is to | 
| 102 | 
> | 
    //  90, so use the cos version to avoid 1/sin terms | 
| 103 | 
  | 
 | 
| 104 | 
< | 
  cr1_dot_cr2 = r_cr1.x * r_cr2.x + r_cr1.y * r_cr2.y + r_cr1.z * r_cr2.z; | 
| 105 | 
< | 
   | 
| 106 | 
< | 
  cos_phi = cr1_dot_cr2 / r_cr1_r_cr2; | 
| 97 | 
< | 
   | 
| 98 | 
< | 
   /* adjust for the granularity of the numbers for angles near 0 or pi */ | 
| 104 | 
> | 
    //double dVdsinPhi = dVdPhi /cos_phi; | 
| 105 | 
> | 
    //Vector3d dsindB = (sin_phi * B - C) /rB; | 
| 106 | 
> | 
    //Vector3d dsindC = (sin_phi * C - B) /rC; | 
| 107 | 
  | 
 | 
| 108 | 
< | 
  if(cos_phi > 1.0) cos_phi = 1.0; | 
| 101 | 
< | 
  if(cos_phi < -1.0) cos_phi = -1.0; | 
| 108 | 
> | 
    //f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); | 
| 109 | 
  | 
 | 
| 110 | 
+ | 
    //f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); | 
| 111 | 
  | 
 | 
| 112 | 
< | 
  /******************************************************************** | 
| 105 | 
< | 
   * | 
| 106 | 
< | 
   * This next section calculates derivatives needed for the force | 
| 107 | 
< | 
   * calculation | 
| 108 | 
< | 
   * | 
| 109 | 
< | 
   ********************************************************************/ | 
| 112 | 
> | 
    //f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); | 
| 113 | 
  | 
 | 
| 114 | 
+ | 
    //f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() | 
| 115 | 
+ | 
    //+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); | 
| 116 | 
  | 
 | 
| 117 | 
< | 
  /* the derivatives of cos phi with respect to the x, y, | 
| 118 | 
< | 
     and z components of vectors cr1 and cr2. */ | 
| 114 | 
< | 
  double d_cos_dx_cr1; | 
| 115 | 
< | 
  double d_cos_dy_cr1; | 
| 116 | 
< | 
  double d_cos_dz_cr1; | 
| 117 | 
< | 
  double d_cos_dx_cr2; | 
| 118 | 
< | 
  double d_cos_dy_cr2; | 
| 119 | 
< | 
  double d_cos_dz_cr2; | 
| 117 | 
> | 
    //f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() | 
| 118 | 
> | 
    //+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); | 
| 119 | 
  | 
 | 
| 120 | 
< | 
  d_cos_dx_cr1 = r_cr2.x / r_cr1_r_cr2 - (cos_phi * r_cr1.x) / r_cr1_sqr; | 
| 121 | 
< | 
  d_cos_dy_cr1 = r_cr2.y / r_cr1_r_cr2 - (cos_phi * r_cr1.y) / r_cr1_sqr; | 
| 123 | 
< | 
  d_cos_dz_cr1 = r_cr2.z / r_cr1_r_cr2 - (cos_phi * r_cr1.z) / r_cr1_sqr; | 
| 120 | 
> | 
    //f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() | 
| 121 | 
> | 
    //+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); | 
| 122 | 
  | 
 | 
| 123 | 
< | 
  d_cos_dx_cr2 = r_cr1.x / r_cr1_r_cr2 - (cos_phi * r_cr2.x) / r_cr2_sqr; | 
| 126 | 
< | 
  d_cos_dy_cr2 = r_cr1.y / r_cr1_r_cr2 - (cos_phi * r_cr2.y) / r_cr2_sqr; | 
| 127 | 
< | 
  d_cos_dz_cr2 = r_cr1.z / r_cr1_r_cr2 - (cos_phi * r_cr2.z) / r_cr2_sqr; | 
| 123 | 
> | 
    //f3 = dVdsinPhi * cross(r32, dsindB); | 
| 124 | 
  | 
 | 
| 125 | 
< | 
  /*********************************************************************** | 
| 130 | 
< | 
   * | 
| 131 | 
< | 
   * Calculate the actual forces and place them in the atoms.  | 
| 132 | 
< | 
   * | 
| 133 | 
< | 
   ***********************************************************************/ | 
| 125 | 
> | 
    //} | 
| 126 | 
  | 
 | 
| 127 | 
< | 
  double force; /*the force scaling factor */ | 
| 127 | 
> | 
    atom1_->addFrc(f1); | 
| 128 | 
> | 
    atom2_->addFrc(f2 - f1); | 
| 129 | 
> | 
    atom3_->addFrc(f3 - f2); | 
| 130 | 
> | 
    atom4_->addFrc(-f3); | 
| 131 | 
> | 
  } | 
| 132 | 
  | 
 | 
| 137 | 
– | 
  force = torsion_force(cos_phi); | 
| 138 | 
– | 
 | 
| 139 | 
– | 
  aF[0] = force * (d_cos_dy_cr1 * r_cb.z - d_cos_dz_cr1 * r_cb.y); | 
| 140 | 
– | 
  aF[1] = force * (d_cos_dz_cr1 * r_cb.x - d_cos_dx_cr1 * r_cb.z); | 
| 141 | 
– | 
  aF[2] = force * (d_cos_dx_cr1 * r_cb.y - d_cos_dy_cr1 * r_cb.x); | 
| 142 | 
– | 
 | 
| 143 | 
– | 
  bF[0] = force * (  d_cos_dy_cr1 * (r_ab.z - r_cb.z) | 
| 144 | 
– | 
                   - d_cos_dy_cr2 *  r_cd.z        | 
| 145 | 
– | 
                   + d_cos_dz_cr1 * (r_cb.y - r_ab.y) | 
| 146 | 
– | 
                   + d_cos_dz_cr2 *  r_cd.y); | 
| 147 | 
– | 
  bF[1] = force * (  d_cos_dx_cr1 * (r_cb.z - r_ab.z) | 
| 148 | 
– | 
                   + d_cos_dx_cr2 *  r_cd.z        | 
| 149 | 
– | 
                   + d_cos_dz_cr1 * (r_ab.x - r_cb.x) | 
| 150 | 
– | 
                   - d_cos_dz_cr2 *  r_cd.x); | 
| 151 | 
– | 
  bF[2] = force * (  d_cos_dx_cr1 * (r_ab.y - r_cb.y) | 
| 152 | 
– | 
                   - d_cos_dx_cr2 *  r_cd.y        | 
| 153 | 
– | 
                   + d_cos_dy_cr1 * (r_cb.x - r_ab.x) | 
| 154 | 
– | 
                   + d_cos_dy_cr2 *  r_cd.x); | 
| 155 | 
– | 
 | 
| 156 | 
– | 
  cF[0] = force * (- d_cos_dy_cr1 *  r_ab.z | 
| 157 | 
– | 
                   - d_cos_dy_cr2 * (r_cb.z - r_cd.z) | 
| 158 | 
– | 
                   + d_cos_dz_cr1 *  r_ab.y | 
| 159 | 
– | 
                   - d_cos_dz_cr2 * (r_cd.y - r_cb.y)); | 
| 160 | 
– | 
  cF[1] = force * (  d_cos_dx_cr1 *  r_ab.z | 
| 161 | 
– | 
                   - d_cos_dx_cr2 * (r_cd.z - r_cb.z) | 
| 162 | 
– | 
                   - d_cos_dz_cr1 *  r_ab.x | 
| 163 | 
– | 
                   - d_cos_dz_cr2 * (r_cb.x - r_cd.x)); | 
| 164 | 
– | 
  cF[2] = force * (- d_cos_dx_cr1 *  r_ab.y | 
| 165 | 
– | 
                   - d_cos_dx_cr2 * (r_cb.y - r_cd.y) | 
| 166 | 
– | 
                   + d_cos_dy_cr1 *  r_ab.x | 
| 167 | 
– | 
                   - d_cos_dy_cr2 * (r_cd.x - r_cb.x)); | 
| 168 | 
– | 
 | 
| 169 | 
– | 
  dF[0] = force * (d_cos_dy_cr2 * r_cb.z - d_cos_dz_cr2 * r_cb.y); | 
| 170 | 
– | 
  dF[1] = force * (d_cos_dz_cr2 * r_cb.x - d_cos_dx_cr2 * r_cb.z); | 
| 171 | 
– | 
  dF[2] = force * (d_cos_dx_cr2 * r_cb.y - d_cos_dy_cr2 * r_cb.x); | 
| 172 | 
– | 
 | 
| 173 | 
– | 
 | 
| 174 | 
– | 
  c_p_a->addFrc(aF); | 
| 175 | 
– | 
  c_p_b->addFrc(bF); | 
| 176 | 
– | 
  c_p_c->addFrc(cF); | 
| 177 | 
– | 
  c_p_d->addFrc(dF); | 
| 133 | 
  | 
} |