| 1 | #include "SRI.hpp" | 
| 2 | #include "Atom.hpp" | 
| 3 | #include <math.h> | 
| 4 | #include <iostream> | 
| 5 | #include <stdlib.h> | 
| 6 |  | 
| 7 | void Torsion::set_atoms( Atom &a, Atom &b, Atom &c, Atom &d){ | 
| 8 | c_p_a = &a; | 
| 9 | c_p_b = &b; | 
| 10 | c_p_c = &c; | 
| 11 | c_p_d = &d; | 
| 12 | } | 
| 13 |  | 
| 14 |  | 
| 15 | void Torsion::calc_forces(){ | 
| 16 |  | 
| 17 | /********************************************************************** | 
| 18 | * | 
| 19 | * initialize vectors | 
| 20 | * | 
| 21 | ***********************************************************************/ | 
| 22 |  | 
| 23 | vect r_ab; /* the vector whose origin is a and end is b */ | 
| 24 | vect r_cb; /* the vector whose origin is c and end is b */ | 
| 25 | vect r_cd; /* the vector whose origin is c and end is b */ | 
| 26 | vect r_cr1; /* the cross product of r_ab and r_cb */ | 
| 27 | vect r_cr2; /* the cross product of r_cb and r_cd */ | 
| 28 |  | 
| 29 | double r_cr1_x2; /* the components of r_cr1 squared */ | 
| 30 | double r_cr1_y2; | 
| 31 | double r_cr1_z2; | 
| 32 |  | 
| 33 | double r_cr2_x2; /* the components of r_cr2 squared */ | 
| 34 | double r_cr2_y2; | 
| 35 | double r_cr2_z2; | 
| 36 |  | 
| 37 | double r_cr1_sqr; /* the length of r_cr1 squared */ | 
| 38 | double r_cr2_sqr; /* the length of r_cr2 squared */ | 
| 39 |  | 
| 40 | double r_cr1_r_cr2; /* the length of r_cr1 * length of r_cr2 */ | 
| 41 |  | 
| 42 | double aR[3], bR[3], cR[3], dR[3]; | 
| 43 | double aF[3], bF[3], cF[3], dF[3]; | 
| 44 |  | 
| 45 | c_p_a->getPos( aR ); | 
| 46 | c_p_b->getPos( bR ); | 
| 47 | c_p_c->getPos( cR ); | 
| 48 | c_p_d->getPos( dR ); | 
| 49 |  | 
| 50 | r_ab.x = bR[0] - aR[0]; | 
| 51 | r_ab.y = bR[1] - aR[1]; | 
| 52 | r_ab.z = bR[2] - aR[2]; | 
| 53 | r_ab.length  = sqrt((r_ab.x * r_ab.x + r_ab.y * r_ab.y + r_ab.z * r_ab.z)); | 
| 54 |  | 
| 55 | r_cb.x = bR[0] - cR[0]; | 
| 56 | r_cb.y = bR[1] - cR[1]; | 
| 57 | r_cb.z = bR[2] - cR[2]; | 
| 58 | r_cb.length = sqrt((r_cb.x * r_cb.x + r_cb.y * r_cb.y + r_cb.z * r_cb.z)); | 
| 59 |  | 
| 60 | r_cd.x = dR[0] - cR[0]; | 
| 61 | r_cd.y = dR[1] - cR[1]; | 
| 62 | r_cd.z = dR[2] - cR[2]; | 
| 63 | r_cd.length = sqrt((r_cd.x * r_cd.x + r_cd.y * r_cd.y + r_cd.z * r_cd.z)); | 
| 64 |  | 
| 65 | r_cr1.x = r_ab.y * r_cb.z - r_cb.y * r_ab.z; | 
| 66 | r_cr1.y = r_ab.z * r_cb.x - r_cb.z * r_ab.x; | 
| 67 | r_cr1.z = r_ab.x * r_cb.y - r_cb.x * r_ab.y; | 
| 68 | r_cr1_x2 = r_cr1.x * r_cr1.x; | 
| 69 | r_cr1_y2 = r_cr1.y * r_cr1.y; | 
| 70 | r_cr1_z2 = r_cr1.z * r_cr1.z; | 
| 71 | r_cr1_sqr = r_cr1_x2 + r_cr1_y2 + r_cr1_z2; | 
| 72 | r_cr1.length = sqrt(r_cr1_sqr); | 
| 73 |  | 
| 74 | r_cr2.x = r_cb.y * r_cd.z - r_cd.y * r_cb.z; | 
| 75 | r_cr2.y = r_cb.z * r_cd.x - r_cd.z * r_cb.x; | 
| 76 | r_cr2.z = r_cb.x * r_cd.y - r_cd.x * r_cb.y; | 
| 77 | r_cr2_x2 = r_cr2.x * r_cr2.x; | 
| 78 | r_cr2_y2 = r_cr2.y * r_cr2.y; | 
| 79 | r_cr2_z2 = r_cr2.z * r_cr2.z; | 
| 80 | r_cr2_sqr = r_cr2_x2 + r_cr2_y2 + r_cr2_z2; | 
| 81 | r_cr2.length = sqrt(r_cr2_sqr); | 
| 82 |  | 
| 83 | r_cr1_r_cr2 = r_cr1.length * r_cr2.length; | 
| 84 |  | 
| 85 | /********************************************************************** | 
| 86 | * | 
| 87 | * dot product and angle calculations | 
| 88 | * | 
| 89 | ***********************************************************************/ | 
| 90 |  | 
| 91 | double cr1_dot_cr2; /* the dot product of the cr1 and cr2 vectors */ | 
| 92 | double cos_phi; /* the cosine of the torsion angle */ | 
| 93 |  | 
| 94 | cr1_dot_cr2 = r_cr1.x * r_cr2.x + r_cr1.y * r_cr2.y + r_cr1.z * r_cr2.z; | 
| 95 |  | 
| 96 | cos_phi = cr1_dot_cr2 / r_cr1_r_cr2; | 
| 97 |  | 
| 98 | /* adjust for the granularity of the numbers for angles near 0 or pi */ | 
| 99 |  | 
| 100 | if(cos_phi > 1.0) cos_phi = 1.0; | 
| 101 | if(cos_phi < -1.0) cos_phi = -1.0; | 
| 102 |  | 
| 103 |  | 
| 104 | /******************************************************************** | 
| 105 | * | 
| 106 | * This next section calculates derivatives needed for the force | 
| 107 | * calculation | 
| 108 | * | 
| 109 | ********************************************************************/ | 
| 110 |  | 
| 111 |  | 
| 112 | /* the derivatives of cos phi with respect to the x, y, | 
| 113 | and z components of vectors cr1 and cr2. */ | 
| 114 | double d_cos_dx_cr1; | 
| 115 | double d_cos_dy_cr1; | 
| 116 | double d_cos_dz_cr1; | 
| 117 | double d_cos_dx_cr2; | 
| 118 | double d_cos_dy_cr2; | 
| 119 | double d_cos_dz_cr2; | 
| 120 |  | 
| 121 | d_cos_dx_cr1 = r_cr2.x / r_cr1_r_cr2 - (cos_phi * r_cr1.x) / r_cr1_sqr; | 
| 122 | d_cos_dy_cr1 = r_cr2.y / r_cr1_r_cr2 - (cos_phi * r_cr1.y) / r_cr1_sqr; | 
| 123 | d_cos_dz_cr1 = r_cr2.z / r_cr1_r_cr2 - (cos_phi * r_cr1.z) / r_cr1_sqr; | 
| 124 |  | 
| 125 | d_cos_dx_cr2 = r_cr1.x / r_cr1_r_cr2 - (cos_phi * r_cr2.x) / r_cr2_sqr; | 
| 126 | d_cos_dy_cr2 = r_cr1.y / r_cr1_r_cr2 - (cos_phi * r_cr2.y) / r_cr2_sqr; | 
| 127 | d_cos_dz_cr2 = r_cr1.z / r_cr1_r_cr2 - (cos_phi * r_cr2.z) / r_cr2_sqr; | 
| 128 |  | 
| 129 | /*********************************************************************** | 
| 130 | * | 
| 131 | * Calculate the actual forces and place them in the atoms. | 
| 132 | * | 
| 133 | ***********************************************************************/ | 
| 134 |  | 
| 135 | double force; /*the force scaling factor */ | 
| 136 |  | 
| 137 | force = torsion_force(cos_phi); | 
| 138 |  | 
| 139 | aF[0] = force * (d_cos_dy_cr1 * r_cb.z - d_cos_dz_cr1 * r_cb.y); | 
| 140 | aF[1] = force * (d_cos_dz_cr1 * r_cb.x - d_cos_dx_cr1 * r_cb.z); | 
| 141 | aF[2] = force * (d_cos_dx_cr1 * r_cb.y - d_cos_dy_cr1 * r_cb.x); | 
| 142 |  | 
| 143 | bF[0] = force * (  d_cos_dy_cr1 * (r_ab.z - r_cb.z) | 
| 144 | - d_cos_dy_cr2 *  r_cd.z | 
| 145 | + d_cos_dz_cr1 * (r_cb.y - r_ab.y) | 
| 146 | + d_cos_dz_cr2 *  r_cd.y); | 
| 147 | bF[1] = force * (  d_cos_dx_cr1 * (r_cb.z - r_ab.z) | 
| 148 | + d_cos_dx_cr2 *  r_cd.z | 
| 149 | + d_cos_dz_cr1 * (r_ab.x - r_cb.x) | 
| 150 | - d_cos_dz_cr2 *  r_cd.x); | 
| 151 | bF[2] = force * (  d_cos_dx_cr1 * (r_ab.y - r_cb.y) | 
| 152 | - d_cos_dx_cr2 *  r_cd.y | 
| 153 | + d_cos_dy_cr1 * (r_cb.x - r_ab.x) | 
| 154 | + d_cos_dy_cr2 *  r_cd.x); | 
| 155 |  | 
| 156 | cF[0] = force * (- d_cos_dy_cr1 *  r_ab.z | 
| 157 | - d_cos_dy_cr2 * (r_cb.z - r_cd.z) | 
| 158 | + d_cos_dz_cr1 *  r_ab.y | 
| 159 | - d_cos_dz_cr2 * (r_cd.y - r_cb.y)); | 
| 160 | cF[1] = force * (  d_cos_dx_cr1 *  r_ab.z | 
| 161 | - d_cos_dx_cr2 * (r_cd.z - r_cb.z) | 
| 162 | - d_cos_dz_cr1 *  r_ab.x | 
| 163 | - d_cos_dz_cr2 * (r_cb.x - r_cd.x)); | 
| 164 | cF[2] = force * (- d_cos_dx_cr1 *  r_ab.y | 
| 165 | - d_cos_dx_cr2 * (r_cb.y - r_cd.y) | 
| 166 | + d_cos_dy_cr1 *  r_ab.x | 
| 167 | - d_cos_dy_cr2 * (r_cd.x - r_cb.x)); | 
| 168 |  | 
| 169 | dF[0] = force * (d_cos_dy_cr2 * r_cb.z - d_cos_dz_cr2 * r_cb.y); | 
| 170 | dF[1] = force * (d_cos_dz_cr2 * r_cb.x - d_cos_dx_cr2 * r_cb.z); | 
| 171 | dF[2] = force * (d_cos_dx_cr2 * r_cb.y - d_cos_dy_cr2 * r_cb.x); | 
| 172 |  | 
| 173 |  | 
| 174 | c_p_a->addFrc(aF); | 
| 175 | c_p_b->addFrc(bF); | 
| 176 | c_p_c->addFrc(cF); | 
| 177 | c_p_d->addFrc(dF); | 
| 178 | } |