| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
  | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
< | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 39 | 
> | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
> | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
+ | 
#include "config.h" | 
| 44 | 
+ | 
#include <cmath> | 
| 45 | 
+ | 
 | 
| 46 | 
  | 
#include "primitives/Torsion.hpp" | 
| 47 | 
  | 
 | 
| 48 | 
  | 
namespace OpenMD { | 
| 51 | 
  | 
                   TorsionType *tt) : | 
| 52 | 
  | 
    atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } | 
| 53 | 
  | 
 | 
| 54 | 
< | 
  void Torsion::calcForce(RealType& angle) { | 
| 54 | 
> | 
  void Torsion::calcForce(RealType& angle, bool doParticlePot) { | 
| 55 | 
  | 
 | 
| 56 | 
  | 
    Vector3d pos1 = atom1_->getPos(); | 
| 57 | 
  | 
    Vector3d pos2 = atom2_->getPos(); | 
| 67 | 
  | 
    RealType rA = A.length(); | 
| 68 | 
  | 
    Vector3d B = cross(r32, r43); | 
| 69 | 
  | 
    RealType rB = B.length(); | 
| 66 | 
– | 
    Vector3d C = cross(r32, A); | 
| 67 | 
– | 
    RealType rC = C.length(); | 
| 70 | 
  | 
 | 
| 71 | 
+ | 
    /*  | 
| 72 | 
+ | 
       If either of the two cross product vectors is tiny, that means | 
| 73 | 
+ | 
       the three atoms involved are colinear, and the torsion angle is | 
| 74 | 
+ | 
       going to be undefined.  The easiest check for this problem is | 
| 75 | 
+ | 
       to use the product of the two lengths. | 
| 76 | 
+ | 
    */ | 
| 77 | 
+ | 
    if (rA * rB < OpenMD::epsilon) return; | 
| 78 | 
+ | 
     | 
| 79 | 
  | 
    A.normalize(); | 
| 80 | 
< | 
    B.normalize(); | 
| 71 | 
< | 
    C.normalize(); | 
| 80 | 
> | 
    B.normalize();   | 
| 81 | 
  | 
     | 
| 82 | 
  | 
    //  Calculate the sin and cos | 
| 83 | 
  | 
    RealType cos_phi = dot(A, B) ; | 
| 84 | 
  | 
    if (cos_phi > 1.0) cos_phi = 1.0; | 
| 85 | 
  | 
    if (cos_phi < -1.0) cos_phi = -1.0;  | 
| 86 | 
< | 
 | 
| 86 | 
> | 
     | 
| 87 | 
  | 
    RealType dVdcosPhi; | 
| 88 | 
  | 
    torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 89 | 
  | 
    Vector3d f1 ; | 
| 90 | 
  | 
    Vector3d f2 ; | 
| 91 | 
  | 
    Vector3d f3 ; | 
| 92 | 
< | 
 | 
| 92 | 
> | 
     | 
| 93 | 
  | 
    Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 94 | 
  | 
    Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 95 | 
< | 
 | 
| 95 | 
> | 
     | 
| 96 | 
  | 
    f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 97 | 
  | 
    f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 98 | 
  | 
    f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 101 | 
  | 
    atom2_->addFrc(f2 - f1); | 
| 102 | 
  | 
    atom3_->addFrc(f3 - f2); | 
| 103 | 
  | 
    atom4_->addFrc(-f3); | 
| 104 | 
< | 
 | 
| 105 | 
< | 
    atom1_->addParticlePot(potential_); | 
| 106 | 
< | 
    atom2_->addParticlePot(potential_); | 
| 107 | 
< | 
    atom3_->addParticlePot(potential_); | 
| 108 | 
< | 
    atom4_->addParticlePot(potential_); | 
| 109 | 
< | 
 | 
| 110 | 
< | 
    angle = acos(cos_phi) /M_PI * 180.0; | 
| 111 | 
< | 
  } | 
| 112 | 
< | 
 | 
| 104 | 
> | 
     | 
| 105 | 
> | 
    if (doParticlePot) { | 
| 106 | 
> | 
      atom1_->addParticlePot(potential_); | 
| 107 | 
> | 
      atom2_->addParticlePot(potential_); | 
| 108 | 
> | 
      atom3_->addParticlePot(potential_); | 
| 109 | 
> | 
      atom4_->addParticlePot(potential_); | 
| 110 | 
> | 
    } | 
| 111 | 
> | 
     | 
| 112 | 
> | 
    angle = acos(cos_phi) /M_PI * 180.0;     | 
| 113 | 
> | 
  }   | 
| 114 | 
  | 
} |