| 47 |  | TorsionType *tt) : | 
| 48 |  | atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } | 
| 49 |  |  | 
| 50 | < | void Torsion::calcForce(double& angle) { | 
| 50 | > | void Torsion::calcForce(RealType& angle) { | 
| 51 |  |  | 
| 52 |  | Vector3d pos1 = atom1_->getPos(); | 
| 53 |  | Vector3d pos2 = atom2_->getPos(); | 
| 60 |  |  | 
| 61 |  | //  Calculate the cross products and distances | 
| 62 |  | Vector3d A = cross(r21, r32); | 
| 63 | < | double rA = A.length(); | 
| 63 | > | RealType rA = A.length(); | 
| 64 |  | Vector3d B = cross(r32, r43); | 
| 65 | < | double rB = B.length(); | 
| 65 | > | RealType rB = B.length(); | 
| 66 |  | Vector3d C = cross(r32, A); | 
| 67 | < | double rC = C.length(); | 
| 67 | > | RealType rC = C.length(); | 
| 68 |  |  | 
| 69 |  | A.normalize(); | 
| 70 |  | B.normalize(); | 
| 71 |  | C.normalize(); | 
| 72 |  |  | 
| 73 |  | //  Calculate the sin and cos | 
| 74 | < | double cos_phi = dot(A, B) ; | 
| 74 | > | RealType cos_phi = dot(A, B) ; | 
| 75 |  | if (cos_phi > 1.0) cos_phi = 1.0; | 
| 76 |  | if (cos_phi < -1.0) cos_phi = -1.0; | 
| 77 |  |  | 
| 78 | < | double dVdcosPhi; | 
| 78 | > | RealType dVdcosPhi; | 
| 79 |  | torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 80 |  | Vector3d f1; | 
| 81 |  | Vector3d f2; |