| 1 | < | #include "primitives/SRI.hpp" | 
| 2 | < | #include "primitives/Atom.hpp" | 
| 3 | < | #include <math.h> | 
| 4 | < | #include <iostream> | 
| 5 | < | #include <stdlib.h> | 
| 1 | > | /* | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | > | * | 
| 4 | > | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | > | * non-exclusive, royalty free, license to use, modify and | 
| 6 | > | * redistribute this software in source and binary code form, provided | 
| 7 | > | * that the following conditions are met: | 
| 8 | > | * | 
| 9 | > | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | > | *    publication of scientific results based in part on use of the | 
| 11 | > | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | > | *    the article in which the program was described (Matthew | 
| 13 | > | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | > | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | > | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | > | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | > | * | 
| 18 | > | * 2. Redistributions of source code must retain the above copyright | 
| 19 | > | *    notice, this list of conditions and the following disclaimer. | 
| 20 | > | * | 
| 21 | > | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | > | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | > | *    documentation and/or other materials provided with the | 
| 24 | > | *    distribution. | 
| 25 | > | * | 
| 26 | > | * This software is provided "AS IS," without a warranty of any | 
| 27 | > | * kind. All express or implied conditions, representations and | 
| 28 | > | * warranties, including any implied warranty of merchantability, | 
| 29 | > | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | > | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | > | * be liable for any damages suffered by licensee as a result of | 
| 32 | > | * using, modifying or distributing the software or its | 
| 33 | > | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | > | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | > | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | > | * damages, however caused and regardless of the theory of liability, | 
| 37 | > | * arising out of the use of or inability to use software, even if the | 
| 38 | > | * University of Notre Dame has been advised of the possibility of | 
| 39 | > | * such damages. | 
| 40 | > | */ | 
| 41 | > |  | 
| 42 | > | #include "primitives/Torsion.hpp" | 
| 43 |  |  | 
| 44 | < | void Torsion::set_atoms( Atom &a, Atom &b, Atom &c, Atom &d){ | 
| 8 | < | c_p_a = &a; | 
| 9 | < | c_p_b = &b; | 
| 10 | < | c_p_c = &c; | 
| 11 | < | c_p_d = &d; | 
| 12 | < | } | 
| 44 | > | namespace oopse { | 
| 45 |  |  | 
| 46 | + | Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, | 
| 47 | + | TorsionType *tt) : | 
| 48 | + | atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } | 
| 49 |  |  | 
| 50 | < | void Torsion::calc_forces(){ | 
| 51 | < |  | 
| 52 | < | /********************************************************************** | 
| 53 | < | * | 
| 54 | < | * initialize vectors | 
| 20 | < | * | 
| 21 | < | ***********************************************************************/ | 
| 22 | < |  | 
| 23 | < | vect r_ab; /* the vector whose origin is a and end is b */ | 
| 24 | < | vect r_cb; /* the vector whose origin is c and end is b */ | 
| 25 | < | vect r_cd; /* the vector whose origin is c and end is b */ | 
| 26 | < | vect r_cr1; /* the cross product of r_ab and r_cb */ | 
| 27 | < | vect r_cr2; /* the cross product of r_cb and r_cd */ | 
| 50 | > | void Torsion::calcForce() { | 
| 51 | > | Vector3d pos1 = atom1_->getPos(); | 
| 52 | > | Vector3d pos2 = atom2_->getPos(); | 
| 53 | > | Vector3d pos3 = atom3_->getPos(); | 
| 54 | > | Vector3d pos4 = atom4_->getPos(); | 
| 55 |  |  | 
| 56 | < | double r_cr1_x2; /* the components of r_cr1 squared */ | 
| 57 | < | double r_cr1_y2; | 
| 58 | < | double r_cr1_z2; | 
| 32 | < |  | 
| 33 | < | double r_cr2_x2; /* the components of r_cr2 squared */ | 
| 34 | < | double r_cr2_y2; | 
| 35 | < | double r_cr2_z2; | 
| 56 | > | Vector3d r21 = pos1 - pos2; | 
| 57 | > | Vector3d r32 = pos2 - pos3; | 
| 58 | > | Vector3d r43 = pos3 - pos4; | 
| 59 |  |  | 
| 60 | < | double r_cr1_sqr; /* the length of r_cr1 squared */ | 
| 61 | < | double r_cr2_sqr; /* the length of r_cr2 squared */ | 
| 62 | < |  | 
| 63 | < | double r_cr1_r_cr2; /* the length of r_cr1 * length of r_cr2 */ | 
| 64 | < |  | 
| 65 | < | double aR[3], bR[3], cR[3], dR[3]; | 
| 66 | < | double aF[3], bF[3], cF[3], dF[3]; | 
| 60 | > | //  Calculate the cross products and distances | 
| 61 | > | Vector3d A = cross(r21, r32); | 
| 62 | > | double rA = A.length(); | 
| 63 | > | Vector3d B = cross(r32, r43); | 
| 64 | > | double rB = B.length(); | 
| 65 | > | Vector3d C = cross(r32, A); | 
| 66 | > | double rC = C.length(); | 
| 67 |  |  | 
| 68 | < | c_p_a->getPos( aR ); | 
| 69 | < | c_p_b->getPos( bR ); | 
| 70 | < | c_p_c->getPos( cR ); | 
| 71 | < | c_p_d->getPos( dR ); | 
| 68 | > | A.normalize(); | 
| 69 | > | B.normalize(); | 
| 70 | > | C.normalize(); | 
| 71 | > |  | 
| 72 | > | //  Calculate the sin and cos | 
| 73 | > | double cos_phi = dot(A, B) ; | 
| 74 | > | double sin_phi = dot(C, B); | 
| 75 |  |  | 
| 76 | < | r_ab.x = bR[0] - aR[0]; | 
| 77 | < | r_ab.y = bR[1] - aR[1]; | 
| 52 | < | r_ab.z = bR[2] - aR[2]; | 
| 53 | < | r_ab.length  = sqrt((r_ab.x * r_ab.x + r_ab.y * r_ab.y + r_ab.z * r_ab.z)); | 
| 76 | > | double dVdPhi; | 
| 77 | > | torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); | 
| 78 |  |  | 
| 79 | < | r_cb.x = bR[0] - cR[0]; | 
| 80 | < | r_cb.y = bR[1] - cR[1]; | 
| 81 | < | r_cb.z = bR[2] - cR[2]; | 
| 58 | < | r_cb.length = sqrt((r_cb.x * r_cb.x + r_cb.y * r_cb.y + r_cb.z * r_cb.z)); | 
| 79 | > | Vector3d f1; | 
| 80 | > | Vector3d f2; | 
| 81 | > | Vector3d f3; | 
| 82 |  |  | 
| 83 | < | r_cd.x = dR[0] - cR[0]; | 
| 84 | < | r_cd.y = dR[1] - cR[1]; | 
| 85 | < | r_cd.z = dR[2] - cR[2]; | 
| 86 | < | r_cd.length = sqrt((r_cd.x * r_cd.x + r_cd.y * r_cd.y + r_cd.z * r_cd.z)); | 
| 83 | > | //  Next, we want to calculate the forces.  In order | 
| 84 | > | //  to do that, we first need to figure out whether the | 
| 85 | > | //  sin or cos form will be more stable.  For this, | 
| 86 | > | //  just look at the value of phi | 
| 87 | > | //if (fabs(sin_phi) > 0.1) { | 
| 88 | > | //  use the sin version to avoid 1/cos terms | 
| 89 |  |  | 
| 90 | < | r_cr1.x = r_ab.y * r_cb.z - r_cb.y * r_ab.z; | 
| 91 | < | r_cr1.y = r_ab.z * r_cb.x - r_cb.z * r_ab.x; | 
| 67 | < | r_cr1.z = r_ab.x * r_cb.y - r_cb.x * r_ab.y; | 
| 68 | < | r_cr1_x2 = r_cr1.x * r_cr1.x; | 
| 69 | < | r_cr1_y2 = r_cr1.y * r_cr1.y; | 
| 70 | < | r_cr1_z2 = r_cr1.z * r_cr1.z; | 
| 71 | < | r_cr1_sqr = r_cr1_x2 + r_cr1_y2 + r_cr1_z2; | 
| 72 | < | r_cr1.length = sqrt(r_cr1_sqr); | 
| 90 | > | Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 91 | > | Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 92 |  |  | 
| 93 | < | r_cr2.x = r_cb.y * r_cd.z - r_cd.y * r_cb.z; | 
| 75 | < | r_cr2.y = r_cb.z * r_cd.x - r_cd.z * r_cb.x; | 
| 76 | < | r_cr2.z = r_cb.x * r_cd.y - r_cd.x * r_cb.y; | 
| 77 | < | r_cr2_x2 = r_cr2.x * r_cr2.x; | 
| 78 | < | r_cr2_y2 = r_cr2.y * r_cr2.y; | 
| 79 | < | r_cr2_z2 = r_cr2.z * r_cr2.z; | 
| 80 | < | r_cr2_sqr = r_cr2_x2 + r_cr2_y2 + r_cr2_z2; | 
| 81 | < | r_cr2.length = sqrt(r_cr2_sqr); | 
| 93 | > | double dVdcosPhi = -dVdPhi / sin_phi; | 
| 94 |  |  | 
| 95 | < | r_cr1_r_cr2 = r_cr1.length * r_cr2.length; | 
| 95 | > | f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 96 | > | f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 97 | > | f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 98 |  |  | 
| 99 | < | /********************************************************************** | 
| 100 | < | * | 
| 101 | < | * dot product and angle calculations | 
| 102 | < | * | 
| 89 | < | ***********************************************************************/ | 
| 90 | < |  | 
| 91 | < | double cr1_dot_cr2; /* the dot product of the cr1 and cr2 vectors */ | 
| 92 | < | double cos_phi; /* the cosine of the torsion angle */ | 
| 99 | > | /** @todo fix below block, must be something wrong with the sign somewhere */ | 
| 100 | > | //} else { | 
| 101 | > | //  This angle is closer to 0 or 180 than it is to | 
| 102 | > | //  90, so use the cos version to avoid 1/sin terms | 
| 103 |  |  | 
| 104 | < | cr1_dot_cr2 = r_cr1.x * r_cr2.x + r_cr1.y * r_cr2.y + r_cr1.z * r_cr2.z; | 
| 105 | < |  | 
| 106 | < | cos_phi = cr1_dot_cr2 / r_cr1_r_cr2; | 
| 97 | < |  | 
| 98 | < | /* adjust for the granularity of the numbers for angles near 0 or pi */ | 
| 104 | > | //double dVdsinPhi = dVdPhi /cos_phi; | 
| 105 | > | //Vector3d dsindB = (sin_phi * B - C) /rB; | 
| 106 | > | //Vector3d dsindC = (sin_phi * C - B) /rC; | 
| 107 |  |  | 
| 108 | < | if(cos_phi > 1.0) cos_phi = 1.0; | 
| 101 | < | if(cos_phi < -1.0) cos_phi = -1.0; | 
| 108 | > | //f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); | 
| 109 |  |  | 
| 110 | + | //f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); | 
| 111 |  |  | 
| 112 | < | /******************************************************************** | 
| 105 | < | * | 
| 106 | < | * This next section calculates derivatives needed for the force | 
| 107 | < | * calculation | 
| 108 | < | * | 
| 109 | < | ********************************************************************/ | 
| 112 | > | //f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); | 
| 113 |  |  | 
| 114 | + | //f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() | 
| 115 | + | //+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); | 
| 116 |  |  | 
| 117 | < | /* the derivatives of cos phi with respect to the x, y, | 
| 118 | < | and z components of vectors cr1 and cr2. */ | 
| 114 | < | double d_cos_dx_cr1; | 
| 115 | < | double d_cos_dy_cr1; | 
| 116 | < | double d_cos_dz_cr1; | 
| 117 | < | double d_cos_dx_cr2; | 
| 118 | < | double d_cos_dy_cr2; | 
| 119 | < | double d_cos_dz_cr2; | 
| 117 | > | //f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() | 
| 118 | > | //+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); | 
| 119 |  |  | 
| 120 | < | d_cos_dx_cr1 = r_cr2.x / r_cr1_r_cr2 - (cos_phi * r_cr1.x) / r_cr1_sqr; | 
| 121 | < | d_cos_dy_cr1 = r_cr2.y / r_cr1_r_cr2 - (cos_phi * r_cr1.y) / r_cr1_sqr; | 
| 123 | < | d_cos_dz_cr1 = r_cr2.z / r_cr1_r_cr2 - (cos_phi * r_cr1.z) / r_cr1_sqr; | 
| 120 | > | //f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() | 
| 121 | > | //+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); | 
| 122 |  |  | 
| 123 | < | d_cos_dx_cr2 = r_cr1.x / r_cr1_r_cr2 - (cos_phi * r_cr2.x) / r_cr2_sqr; | 
| 126 | < | d_cos_dy_cr2 = r_cr1.y / r_cr1_r_cr2 - (cos_phi * r_cr2.y) / r_cr2_sqr; | 
| 127 | < | d_cos_dz_cr2 = r_cr1.z / r_cr1_r_cr2 - (cos_phi * r_cr2.z) / r_cr2_sqr; | 
| 123 | > | //f3 = dVdsinPhi * cross(r32, dsindB); | 
| 124 |  |  | 
| 125 | < | /*********************************************************************** | 
| 130 | < | * | 
| 131 | < | * Calculate the actual forces and place them in the atoms. | 
| 132 | < | * | 
| 133 | < | ***********************************************************************/ | 
| 125 | > | //} | 
| 126 |  |  | 
| 127 | < | double force; /*the force scaling factor */ | 
| 127 | > | atom1_->addFrc(f1); | 
| 128 | > | atom2_->addFrc(f2 - f1); | 
| 129 | > | atom3_->addFrc(f3 - f2); | 
| 130 | > | atom4_->addFrc(-f3); | 
| 131 | > | } | 
| 132 |  |  | 
| 137 | – | force = torsion_force(cos_phi); | 
| 138 | – |  | 
| 139 | – | aF[0] = force * (d_cos_dy_cr1 * r_cb.z - d_cos_dz_cr1 * r_cb.y); | 
| 140 | – | aF[1] = force * (d_cos_dz_cr1 * r_cb.x - d_cos_dx_cr1 * r_cb.z); | 
| 141 | – | aF[2] = force * (d_cos_dx_cr1 * r_cb.y - d_cos_dy_cr1 * r_cb.x); | 
| 142 | – |  | 
| 143 | – | bF[0] = force * (  d_cos_dy_cr1 * (r_ab.z - r_cb.z) | 
| 144 | – | - d_cos_dy_cr2 *  r_cd.z | 
| 145 | – | + d_cos_dz_cr1 * (r_cb.y - r_ab.y) | 
| 146 | – | + d_cos_dz_cr2 *  r_cd.y); | 
| 147 | – | bF[1] = force * (  d_cos_dx_cr1 * (r_cb.z - r_ab.z) | 
| 148 | – | + d_cos_dx_cr2 *  r_cd.z | 
| 149 | – | + d_cos_dz_cr1 * (r_ab.x - r_cb.x) | 
| 150 | – | - d_cos_dz_cr2 *  r_cd.x); | 
| 151 | – | bF[2] = force * (  d_cos_dx_cr1 * (r_ab.y - r_cb.y) | 
| 152 | – | - d_cos_dx_cr2 *  r_cd.y | 
| 153 | – | + d_cos_dy_cr1 * (r_cb.x - r_ab.x) | 
| 154 | – | + d_cos_dy_cr2 *  r_cd.x); | 
| 155 | – |  | 
| 156 | – | cF[0] = force * (- d_cos_dy_cr1 *  r_ab.z | 
| 157 | – | - d_cos_dy_cr2 * (r_cb.z - r_cd.z) | 
| 158 | – | + d_cos_dz_cr1 *  r_ab.y | 
| 159 | – | - d_cos_dz_cr2 * (r_cd.y - r_cb.y)); | 
| 160 | – | cF[1] = force * (  d_cos_dx_cr1 *  r_ab.z | 
| 161 | – | - d_cos_dx_cr2 * (r_cd.z - r_cb.z) | 
| 162 | – | - d_cos_dz_cr1 *  r_ab.x | 
| 163 | – | - d_cos_dz_cr2 * (r_cb.x - r_cd.x)); | 
| 164 | – | cF[2] = force * (- d_cos_dx_cr1 *  r_ab.y | 
| 165 | – | - d_cos_dx_cr2 * (r_cb.y - r_cd.y) | 
| 166 | – | + d_cos_dy_cr1 *  r_ab.x | 
| 167 | – | - d_cos_dy_cr2 * (r_cd.x - r_cb.x)); | 
| 168 | – |  | 
| 169 | – | dF[0] = force * (d_cos_dy_cr2 * r_cb.z - d_cos_dz_cr2 * r_cb.y); | 
| 170 | – | dF[1] = force * (d_cos_dz_cr2 * r_cb.x - d_cos_dx_cr2 * r_cb.z); | 
| 171 | – | dF[2] = force * (d_cos_dx_cr2 * r_cb.y - d_cos_dy_cr2 * r_cb.x); | 
| 172 | – |  | 
| 173 | – |  | 
| 174 | – | c_p_a->addFrc(aF); | 
| 175 | – | c_p_b->addFrc(bF); | 
| 176 | – | c_p_c->addFrc(cF); | 
| 177 | – | c_p_d->addFrc(dF); | 
| 133 |  | } |