| 1 | < | /* | 
| 1 | > | /* | 
| 2 |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  | * | 
| 4 |  | * The University of Notre Dame grants you ("Licensee") a | 
| 43 |  |  | 
| 44 |  | namespace oopse { | 
| 45 |  |  | 
| 46 | < | Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, | 
| 47 | < | TorsionType *tt) : | 
| 46 | > | Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, | 
| 47 | > | TorsionType *tt) : | 
| 48 |  | atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } | 
| 49 |  |  | 
| 50 | < | void Torsion::calcForce() { | 
| 50 | > | void Torsion::calcForce() { | 
| 51 |  | Vector3d pos1 = atom1_->getPos(); | 
| 52 |  | Vector3d pos2 = atom2_->getPos(); | 
| 53 |  | Vector3d pos3 = atom3_->getPos(); | 
| 80 |  | Vector3d f2; | 
| 81 |  | Vector3d f3; | 
| 82 |  |  | 
| 83 | < | //  Next, we want to calculate the forces.  In order | 
| 84 | < | //  to do that, we first need to figure out whether the | 
| 85 | < | //  sin or cos form will be more stable.  For this, | 
| 86 | < | //  just look at the value of phi | 
| 87 | < | //if (fabs(sin_phi) > 0.1) { | 
| 88 | < | //  use the sin version to avoid 1/cos terms | 
| 83 | > | if (fabs(sin_phi) > 0.5) { | 
| 84 | > | //use the sin version to  prevent potential singularities | 
| 85 |  |  | 
| 86 | < | Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 87 | < | Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 86 | > | Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 87 | > | Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 88 |  |  | 
| 89 | < | double dVdcosPhi = -dVdPhi / sin_phi; | 
| 89 | > | double dVdcosPhi = -dVdPhi / sin_phi; | 
| 90 |  |  | 
| 91 | < | f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 92 | < | f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 93 | < | f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 91 | > | f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 92 | > | f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 93 | > | f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 94 |  |  | 
| 95 | < | /** @todo fix below block, must be something wrong with the sign somewhere */ | 
| 96 | < | //} else { | 
| 101 | < | //  This angle is closer to 0 or 180 than it is to | 
| 102 | < | //  90, so use the cos version to avoid 1/sin terms | 
| 95 | > | } else { | 
| 96 | > | //use the cos version to  prevent potential singularities | 
| 97 |  |  | 
| 98 | < | //double dVdsinPhi = dVdPhi /cos_phi; | 
| 99 | < | //Vector3d dsindB = (sin_phi * B - C) /rB; | 
| 100 | < | //Vector3d dsindC = (sin_phi * C - B) /rC; | 
| 98 | > | double dVdsinPhi = dVdPhi /cos_phi; | 
| 99 | > | Vector3d dsindB = (sin_phi * B - C) /rB; | 
| 100 | > | Vector3d dsindC = (sin_phi * C - B) /rC; | 
| 101 |  |  | 
| 102 | < | //f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); | 
| 102 | > | f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); | 
| 103 |  |  | 
| 104 | < | //f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); | 
| 104 | > | f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); | 
| 105 |  |  | 
| 106 | < | //f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); | 
| 106 | > | f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); | 
| 107 |  |  | 
| 108 | < | //f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() | 
| 109 | < | //+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); | 
| 108 | > | f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() | 
| 109 | > | + (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); | 
| 110 |  |  | 
| 111 | < | //f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() | 
| 112 | < | //+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); | 
| 111 | > | f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() | 
| 112 | > | + (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); | 
| 113 |  |  | 
| 114 | < | //f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() | 
| 115 | < | //+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); | 
| 114 | > | f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() | 
| 115 | > | +(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); | 
| 116 |  |  | 
| 117 | < | //f3 = dVdsinPhi * cross(r32, dsindB); | 
| 117 | > | f3 = dVdsinPhi * cross(dsindB, r32); | 
| 118 | > | } | 
| 119 |  |  | 
| 125 | – | //} | 
| 126 | – |  | 
| 120 |  | atom1_->addFrc(f1); | 
| 121 |  | atom2_->addFrc(f2 - f1); | 
| 122 |  | atom3_->addFrc(f3 - f2); | 
| 123 |  | atom4_->addFrc(-f3); | 
| 124 | < | } | 
| 124 | > | } | 
| 125 |  |  | 
| 126 |  | } |