| 1 |
< |
#include "SRI.hpp" |
| 2 |
< |
#include "Atom.hpp" |
| 3 |
< |
#include <math.h> |
| 4 |
< |
#include <iostream> |
| 5 |
< |
#include <stdlib.h> |
| 1 |
> |
/* |
| 2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
> |
* |
| 4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
> |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
> |
* redistribute this software in source and binary code form, provided |
| 7 |
> |
* that the following conditions are met: |
| 8 |
> |
* |
| 9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
> |
* publication of scientific results based in part on use of the |
| 11 |
> |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
> |
* the article in which the program was described (Matthew |
| 13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
> |
* |
| 18 |
> |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
> |
* notice, this list of conditions and the following disclaimer. |
| 20 |
> |
* |
| 21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
> |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
> |
* documentation and/or other materials provided with the |
| 24 |
> |
* distribution. |
| 25 |
> |
* |
| 26 |
> |
* This software is provided "AS IS," without a warranty of any |
| 27 |
> |
* kind. All express or implied conditions, representations and |
| 28 |
> |
* warranties, including any implied warranty of merchantability, |
| 29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
> |
* be liable for any damages suffered by licensee as a result of |
| 32 |
> |
* using, modifying or distributing the software or its |
| 33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
> |
* damages, however caused and regardless of the theory of liability, |
| 37 |
> |
* arising out of the use of or inability to use software, even if the |
| 38 |
> |
* University of Notre Dame has been advised of the possibility of |
| 39 |
> |
* such damages. |
| 40 |
> |
*/ |
| 41 |
> |
|
| 42 |
> |
#include "primitives/Torsion.hpp" |
| 43 |
|
|
| 44 |
< |
void Torsion::set_atoms( Atom &a, Atom &b, Atom &c, Atom &d){ |
| 8 |
< |
c_p_a = &a; |
| 9 |
< |
c_p_b = &b; |
| 10 |
< |
c_p_c = &c; |
| 11 |
< |
c_p_d = &d; |
| 12 |
< |
} |
| 44 |
> |
namespace oopse { |
| 45 |
|
|
| 46 |
+ |
Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, |
| 47 |
+ |
TorsionType *tt) : |
| 48 |
+ |
atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } |
| 49 |
|
|
| 50 |
< |
void Torsion::calc_forces(){ |
| 51 |
< |
|
| 52 |
< |
/********************************************************************** |
| 53 |
< |
* |
| 54 |
< |
* initialize vectors |
| 20 |
< |
* |
| 21 |
< |
***********************************************************************/ |
| 22 |
< |
|
| 23 |
< |
vect r_ab; /* the vector whose origin is a and end is b */ |
| 24 |
< |
vect r_cb; /* the vector whose origin is c and end is b */ |
| 25 |
< |
vect r_cd; /* the vector whose origin is c and end is b */ |
| 26 |
< |
vect r_cr1; /* the cross product of r_ab and r_cb */ |
| 27 |
< |
vect r_cr2; /* the cross product of r_cb and r_cd */ |
| 50 |
> |
void Torsion::calcForce() { |
| 51 |
> |
Vector3d pos1 = atom1_->getPos(); |
| 52 |
> |
Vector3d pos2 = atom2_->getPos(); |
| 53 |
> |
Vector3d pos3 = atom3_->getPos(); |
| 54 |
> |
Vector3d pos4 = atom4_->getPos(); |
| 55 |
|
|
| 56 |
< |
double r_cr1_x2; /* the components of r_cr1 squared */ |
| 57 |
< |
double r_cr1_y2; |
| 58 |
< |
double r_cr1_z2; |
| 32 |
< |
|
| 33 |
< |
double r_cr2_x2; /* the components of r_cr2 squared */ |
| 34 |
< |
double r_cr2_y2; |
| 35 |
< |
double r_cr2_z2; |
| 56 |
> |
Vector3d r21 = pos1 - pos2; |
| 57 |
> |
Vector3d r32 = pos2 - pos3; |
| 58 |
> |
Vector3d r43 = pos3 - pos4; |
| 59 |
|
|
| 60 |
< |
double r_cr1_sqr; /* the length of r_cr1 squared */ |
| 61 |
< |
double r_cr2_sqr; /* the length of r_cr2 squared */ |
| 62 |
< |
|
| 63 |
< |
double r_cr1_r_cr2; /* the length of r_cr1 * length of r_cr2 */ |
| 64 |
< |
|
| 65 |
< |
double aR[3], bR[3], cR[3], dR[3]; |
| 66 |
< |
double aF[3], bF[3], cF[3], dF[3]; |
| 60 |
> |
// Calculate the cross products and distances |
| 61 |
> |
Vector3d A = cross(r21, r32); |
| 62 |
> |
double rA = A.length(); |
| 63 |
> |
Vector3d B = cross(r32, r43); |
| 64 |
> |
double rB = B.length(); |
| 65 |
> |
Vector3d C = cross(r32, A); |
| 66 |
> |
double rC = C.length(); |
| 67 |
|
|
| 68 |
< |
c_p_a->getPos( aR ); |
| 69 |
< |
c_p_b->getPos( bR ); |
| 70 |
< |
c_p_c->getPos( cR ); |
| 71 |
< |
c_p_d->getPos( dR ); |
| 68 |
> |
A.normalize(); |
| 69 |
> |
B.normalize(); |
| 70 |
> |
C.normalize(); |
| 71 |
> |
|
| 72 |
> |
// Calculate the sin and cos |
| 73 |
> |
double cos_phi = dot(A, B) ; |
| 74 |
> |
double sin_phi = dot(C, B); |
| 75 |
|
|
| 76 |
< |
r_ab.x = bR[0] - aR[0]; |
| 77 |
< |
r_ab.y = bR[1] - aR[1]; |
| 52 |
< |
r_ab.z = bR[2] - aR[2]; |
| 53 |
< |
r_ab.length = sqrt((r_ab.x * r_ab.x + r_ab.y * r_ab.y + r_ab.z * r_ab.z)); |
| 76 |
> |
double dVdPhi; |
| 77 |
> |
torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); |
| 78 |
|
|
| 79 |
< |
r_cb.x = bR[0] - cR[0]; |
| 80 |
< |
r_cb.y = bR[1] - cR[1]; |
| 81 |
< |
r_cb.z = bR[2] - cR[2]; |
| 58 |
< |
r_cb.length = sqrt((r_cb.x * r_cb.x + r_cb.y * r_cb.y + r_cb.z * r_cb.z)); |
| 79 |
> |
Vector3d f1; |
| 80 |
> |
Vector3d f2; |
| 81 |
> |
Vector3d f3; |
| 82 |
|
|
| 83 |
< |
r_cd.x = dR[0] - cR[0]; |
| 84 |
< |
r_cd.y = dR[1] - cR[1]; |
| 85 |
< |
r_cd.z = dR[2] - cR[2]; |
| 86 |
< |
r_cd.length = sqrt((r_cd.x * r_cd.x + r_cd.y * r_cd.y + r_cd.z * r_cd.z)); |
| 83 |
> |
// Next, we want to calculate the forces. In order |
| 84 |
> |
// to do that, we first need to figure out whether the |
| 85 |
> |
// sin or cos form will be more stable. For this, |
| 86 |
> |
// just look at the value of phi |
| 87 |
> |
//if (fabs(sin_phi) > 0.1) { |
| 88 |
> |
// use the sin version to avoid 1/cos terms |
| 89 |
|
|
| 90 |
< |
r_cr1.x = r_ab.y * r_cb.z - r_cb.y * r_ab.z; |
| 91 |
< |
r_cr1.y = r_ab.z * r_cb.x - r_cb.z * r_ab.x; |
| 67 |
< |
r_cr1.z = r_ab.x * r_cb.y - r_cb.x * r_ab.y; |
| 68 |
< |
r_cr1_x2 = r_cr1.x * r_cr1.x; |
| 69 |
< |
r_cr1_y2 = r_cr1.y * r_cr1.y; |
| 70 |
< |
r_cr1_z2 = r_cr1.z * r_cr1.z; |
| 71 |
< |
r_cr1_sqr = r_cr1_x2 + r_cr1_y2 + r_cr1_z2; |
| 72 |
< |
r_cr1.length = sqrt(r_cr1_sqr); |
| 90 |
> |
Vector3d dcosdA = (cos_phi * A - B) /rA; |
| 91 |
> |
Vector3d dcosdB = (cos_phi * B - A) /rB; |
| 92 |
|
|
| 93 |
< |
r_cr2.x = r_cb.y * r_cd.z - r_cd.y * r_cb.z; |
| 75 |
< |
r_cr2.y = r_cb.z * r_cd.x - r_cd.z * r_cb.x; |
| 76 |
< |
r_cr2.z = r_cb.x * r_cd.y - r_cd.x * r_cb.y; |
| 77 |
< |
r_cr2_x2 = r_cr2.x * r_cr2.x; |
| 78 |
< |
r_cr2_y2 = r_cr2.y * r_cr2.y; |
| 79 |
< |
r_cr2_z2 = r_cr2.z * r_cr2.z; |
| 80 |
< |
r_cr2_sqr = r_cr2_x2 + r_cr2_y2 + r_cr2_z2; |
| 81 |
< |
r_cr2.length = sqrt(r_cr2_sqr); |
| 93 |
> |
double dVdcosPhi = -dVdPhi / sin_phi; |
| 94 |
|
|
| 95 |
< |
r_cr1_r_cr2 = r_cr1.length * r_cr2.length; |
| 95 |
> |
f1 = dVdcosPhi * cross(r32, dcosdA); |
| 96 |
> |
f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); |
| 97 |
> |
f3 = dVdcosPhi * cross(dcosdB, r32); |
| 98 |
|
|
| 99 |
< |
/********************************************************************** |
| 100 |
< |
* |
| 101 |
< |
* dot product and angle calculations |
| 102 |
< |
* |
| 89 |
< |
***********************************************************************/ |
| 90 |
< |
|
| 91 |
< |
double cr1_dot_cr2; /* the dot product of the cr1 and cr2 vectors */ |
| 92 |
< |
double cos_phi; /* the cosine of the torsion angle */ |
| 99 |
> |
/** @todo fix below block, must be something wrong with the sign somewhere */ |
| 100 |
> |
//} else { |
| 101 |
> |
// This angle is closer to 0 or 180 than it is to |
| 102 |
> |
// 90, so use the cos version to avoid 1/sin terms |
| 103 |
|
|
| 104 |
< |
cr1_dot_cr2 = r_cr1.x * r_cr2.x + r_cr1.y * r_cr2.y + r_cr1.z * r_cr2.z; |
| 105 |
< |
|
| 106 |
< |
cos_phi = cr1_dot_cr2 / r_cr1_r_cr2; |
| 97 |
< |
|
| 98 |
< |
/* adjust for the granularity of the numbers for angles near 0 or pi */ |
| 104 |
> |
//double dVdsinPhi = dVdPhi /cos_phi; |
| 105 |
> |
//Vector3d dsindB = (sin_phi * B - C) /rB; |
| 106 |
> |
//Vector3d dsindC = (sin_phi * C - B) /rC; |
| 107 |
|
|
| 108 |
< |
if(cos_phi > 1.0) cos_phi = 1.0; |
| 101 |
< |
if(cos_phi < -1.0) cos_phi = -1.0; |
| 108 |
> |
//f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); |
| 109 |
|
|
| 110 |
+ |
//f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); |
| 111 |
|
|
| 112 |
< |
/******************************************************************** |
| 105 |
< |
* |
| 106 |
< |
* This next section calculates derivatives needed for the force |
| 107 |
< |
* calculation |
| 108 |
< |
* |
| 109 |
< |
********************************************************************/ |
| 112 |
> |
//f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); |
| 113 |
|
|
| 114 |
+ |
//f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() |
| 115 |
+ |
//+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); |
| 116 |
|
|
| 117 |
< |
/* the derivatives of cos phi with respect to the x, y, |
| 118 |
< |
and z components of vectors cr1 and cr2. */ |
| 114 |
< |
double d_cos_dx_cr1; |
| 115 |
< |
double d_cos_dy_cr1; |
| 116 |
< |
double d_cos_dz_cr1; |
| 117 |
< |
double d_cos_dx_cr2; |
| 118 |
< |
double d_cos_dy_cr2; |
| 119 |
< |
double d_cos_dz_cr2; |
| 117 |
> |
//f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() |
| 118 |
> |
//+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); |
| 119 |
|
|
| 120 |
< |
d_cos_dx_cr1 = r_cr2.x / r_cr1_r_cr2 - (cos_phi * r_cr1.x) / r_cr1_sqr; |
| 121 |
< |
d_cos_dy_cr1 = r_cr2.y / r_cr1_r_cr2 - (cos_phi * r_cr1.y) / r_cr1_sqr; |
| 123 |
< |
d_cos_dz_cr1 = r_cr2.z / r_cr1_r_cr2 - (cos_phi * r_cr1.z) / r_cr1_sqr; |
| 120 |
> |
//f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() |
| 121 |
> |
//+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); |
| 122 |
|
|
| 123 |
< |
d_cos_dx_cr2 = r_cr1.x / r_cr1_r_cr2 - (cos_phi * r_cr2.x) / r_cr2_sqr; |
| 126 |
< |
d_cos_dy_cr2 = r_cr1.y / r_cr1_r_cr2 - (cos_phi * r_cr2.y) / r_cr2_sqr; |
| 127 |
< |
d_cos_dz_cr2 = r_cr1.z / r_cr1_r_cr2 - (cos_phi * r_cr2.z) / r_cr2_sqr; |
| 123 |
> |
//f3 = dVdsinPhi * cross(r32, dsindB); |
| 124 |
|
|
| 125 |
< |
/*********************************************************************** |
| 130 |
< |
* |
| 131 |
< |
* Calculate the actual forces and place them in the atoms. |
| 132 |
< |
* |
| 133 |
< |
***********************************************************************/ |
| 125 |
> |
//} |
| 126 |
|
|
| 127 |
< |
double force; /*the force scaling factor */ |
| 127 |
> |
atom1_->addFrc(f1); |
| 128 |
> |
atom2_->addFrc(f2 - f1); |
| 129 |
> |
atom3_->addFrc(f3 - f2); |
| 130 |
> |
atom4_->addFrc(-f3); |
| 131 |
> |
} |
| 132 |
|
|
| 137 |
– |
force = torsion_force(cos_phi); |
| 138 |
– |
|
| 139 |
– |
aF[0] = force * (d_cos_dy_cr1 * r_cb.z - d_cos_dz_cr1 * r_cb.y); |
| 140 |
– |
aF[1] = force * (d_cos_dz_cr1 * r_cb.x - d_cos_dx_cr1 * r_cb.z); |
| 141 |
– |
aF[2] = force * (d_cos_dx_cr1 * r_cb.y - d_cos_dy_cr1 * r_cb.x); |
| 142 |
– |
|
| 143 |
– |
bF[0] = force * ( d_cos_dy_cr1 * (r_ab.z - r_cb.z) |
| 144 |
– |
- d_cos_dy_cr2 * r_cd.z |
| 145 |
– |
+ d_cos_dz_cr1 * (r_cb.y - r_ab.y) |
| 146 |
– |
+ d_cos_dz_cr2 * r_cd.y); |
| 147 |
– |
bF[1] = force * ( d_cos_dx_cr1 * (r_cb.z - r_ab.z) |
| 148 |
– |
+ d_cos_dx_cr2 * r_cd.z |
| 149 |
– |
+ d_cos_dz_cr1 * (r_ab.x - r_cb.x) |
| 150 |
– |
- d_cos_dz_cr2 * r_cd.x); |
| 151 |
– |
bF[2] = force * ( d_cos_dx_cr1 * (r_ab.y - r_cb.y) |
| 152 |
– |
- d_cos_dx_cr2 * r_cd.y |
| 153 |
– |
+ d_cos_dy_cr1 * (r_cb.x - r_ab.x) |
| 154 |
– |
+ d_cos_dy_cr2 * r_cd.x); |
| 155 |
– |
|
| 156 |
– |
cF[0] = force * (- d_cos_dy_cr1 * r_ab.z |
| 157 |
– |
- d_cos_dy_cr2 * (r_cb.z - r_cd.z) |
| 158 |
– |
+ d_cos_dz_cr1 * r_ab.y |
| 159 |
– |
- d_cos_dz_cr2 * (r_cd.y - r_cb.y)); |
| 160 |
– |
cF[1] = force * ( d_cos_dx_cr1 * r_ab.z |
| 161 |
– |
- d_cos_dx_cr2 * (r_cd.z - r_cb.z) |
| 162 |
– |
- d_cos_dz_cr1 * r_ab.x |
| 163 |
– |
- d_cos_dz_cr2 * (r_cb.x - r_cd.x)); |
| 164 |
– |
cF[2] = force * (- d_cos_dx_cr1 * r_ab.y |
| 165 |
– |
- d_cos_dx_cr2 * (r_cb.y - r_cd.y) |
| 166 |
– |
+ d_cos_dy_cr1 * r_ab.x |
| 167 |
– |
- d_cos_dy_cr2 * (r_cd.x - r_cb.x)); |
| 168 |
– |
|
| 169 |
– |
dF[0] = force * (d_cos_dy_cr2 * r_cb.z - d_cos_dz_cr2 * r_cb.y); |
| 170 |
– |
dF[1] = force * (d_cos_dz_cr2 * r_cb.x - d_cos_dx_cr2 * r_cb.z); |
| 171 |
– |
dF[2] = force * (d_cos_dx_cr2 * r_cb.y - d_cos_dy_cr2 * r_cb.x); |
| 172 |
– |
|
| 173 |
– |
|
| 174 |
– |
c_p_a->addFrc(aF); |
| 175 |
– |
c_p_b->addFrc(bF); |
| 176 |
– |
c_p_c->addFrc(cF); |
| 177 |
– |
c_p_d->addFrc(dF); |
| 133 |
|
} |