| 1 | gezelter | 507 | /* | 
| 2 | chrisfen | 417 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Acknowledgement of the program authors must be made in any | 
| 10 |  |  | *    publication of scientific results based in part on use of the | 
| 11 |  |  | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 |  |  | *    the article in which the program was described (Matthew | 
| 13 |  |  | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 |  |  | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 |  |  | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 |  |  | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 |  |  | * | 
| 18 |  |  | * 2. Redistributions of source code must retain the above copyright | 
| 19 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 20 |  |  | * | 
| 21 |  |  | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 23 |  |  | *    documentation and/or other materials provided with the | 
| 24 |  |  | *    distribution. | 
| 25 |  |  | * | 
| 26 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 27 |  |  | * kind. All express or implied conditions, representations and | 
| 28 |  |  | * warranties, including any implied warranty of merchantability, | 
| 29 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 32 |  |  | * using, modifying or distributing the software or its | 
| 33 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 34 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 36 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 37 |  |  | * arising out of the use of or inability to use software, even if the | 
| 38 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 39 |  |  | * such damages. | 
| 40 |  |  | */ | 
| 41 | chrisfen | 43 |  | 
| 42 | gezelter | 2 | #include <stdlib.h> | 
| 43 |  |  | #include <math.h> | 
| 44 |  |  |  | 
| 45 |  |  | using namespace std; | 
| 46 |  |  |  | 
| 47 | gezelter | 46 | #include "restraints/Restraints.hpp" | 
| 48 | chrisfen | 417 | #include "primitives/Molecule.hpp" | 
| 49 | gezelter | 46 | #include "utils/simError.h" | 
| 50 | gezelter | 2 |  | 
| 51 |  |  | #define PI 3.14159265359 | 
| 52 |  |  | #define TWO_PI 6.28318530718 | 
| 53 |  |  |  | 
| 54 | chrisfen | 417 | namespace oopse { | 
| 55 |  |  |  | 
| 56 |  |  | Restraints::Restraints(SimInfo* info, double lambdaVal, double lambdaExp){ | 
| 57 |  |  | info_ = info; | 
| 58 |  |  | Globals* simParam = info_->getSimParams(); | 
| 59 | gezelter | 2 |  | 
| 60 | chrisfen | 417 | lambdaValue = lambdaVal; | 
| 61 |  |  | lambdaK = lambdaExp; | 
| 62 | gezelter | 2 |  | 
| 63 | chrisfen | 417 | if (simParam->getUseSolidThermInt()) { | 
| 64 |  |  | if (simParam->haveDistSpringConst()) { | 
| 65 |  |  | kDist = simParam->getDistSpringConst(); | 
| 66 | chrisfen | 43 | } | 
| 67 | chrisfen | 417 | else{ | 
| 68 |  |  | kDist = 6.0; | 
| 69 |  |  | sprintf(painCave.errMsg, | 
| 70 |  |  | "ThermoIntegration Warning: the spring constant for the\n" | 
| 71 |  |  | "\ttranslational restraint was not specified. OOPSE will use\n" | 
| 72 |  |  | "\ta default value of %f. To set it to something else, use\n" | 
| 73 |  |  | "\tthe thermIntDistSpringConst variable.\n", | 
| 74 |  |  | kDist); | 
| 75 |  |  | painCave.isFatal = 0; | 
| 76 |  |  | simError(); | 
| 77 | chrisfen | 43 | } | 
| 78 | chrisfen | 417 | if (simParam->haveThetaSpringConst()) { | 
| 79 |  |  | kTheta = simParam->getThetaSpringConst(); | 
| 80 | chrisfen | 43 | } | 
| 81 | chrisfen | 417 | else{ | 
| 82 |  |  | kTheta = 7.5; | 
| 83 |  |  | sprintf(painCave.errMsg, | 
| 84 |  |  | "ThermoIntegration Warning: the spring constant for the\n" | 
| 85 |  |  | "\tdeflection orientational restraint was not specified.\n" | 
| 86 |  |  | "\tOOPSE will use a default value of %f. To set it to\n" | 
| 87 |  |  | "\tsomething else, use the thermIntThetaSpringConst variable.\n", | 
| 88 |  |  | kTheta); | 
| 89 |  |  | painCave.isFatal = 0; | 
| 90 |  |  | simError(); | 
| 91 | chrisfen | 43 | } | 
| 92 | chrisfen | 417 | if (simParam->haveOmegaSpringConst()) { | 
| 93 |  |  | kOmega = simParam->getOmegaSpringConst(); | 
| 94 |  |  | } | 
| 95 |  |  | else{ | 
| 96 |  |  | kOmega = 13.5; | 
| 97 |  |  | sprintf(painCave.errMsg, | 
| 98 |  |  | "ThermoIntegration Warning: the spring constant for the\n" | 
| 99 |  |  | "\tspin orientational restraint was not specified. OOPSE\n" | 
| 100 |  |  | "\twill use a default value of %f. To set it to something\n" | 
| 101 |  |  | "\telse, use the thermIntOmegaSpringConst variable.\n", | 
| 102 |  |  | kOmega); | 
| 103 |  |  | painCave.isFatal = 0; | 
| 104 |  |  | simError(); | 
| 105 |  |  | } | 
| 106 | gezelter | 2 | } | 
| 107 | chrisfen | 417 |  | 
| 108 |  |  | // build a RestReader and read in important information | 
| 109 | chrisfen | 431 |  | 
| 110 | chrisfen | 417 | restRead_ = new RestReader(info_); | 
| 111 |  |  | restRead_->readIdealCrystal(); | 
| 112 |  |  | restRead_->readZangle(); | 
| 113 |  |  |  | 
| 114 |  |  | delete restRead_; | 
| 115 |  |  | restRead_ = NULL; | 
| 116 |  |  |  | 
| 117 | gezelter | 2 | } | 
| 118 |  |  |  | 
| 119 | chrisfen | 417 | Restraints::~Restraints(){ | 
| 120 |  |  | } | 
| 121 | gezelter | 2 |  | 
| 122 | chrisfen | 417 | void Restraints::Calc_rVal(Vector3d &position, double refPosition[3]){ | 
| 123 |  |  | delRx = position.x() - refPosition[0]; | 
| 124 |  |  | delRy = position.y() - refPosition[1]; | 
| 125 |  |  | delRz = position.z() - refPosition[2]; | 
| 126 |  |  |  | 
| 127 |  |  | return; | 
| 128 |  |  | } | 
| 129 | gezelter | 2 |  | 
| 130 | chrisfen | 417 | void Restraints::Calc_body_thetaVal(RotMat3x3d &matrix, double refUnit[3]){ | 
| 131 |  |  | ub0x = matrix(0,0)*refUnit[0] + matrix(0,1)*refUnit[1] | 
| 132 | gezelter | 507 | + matrix(0,2)*refUnit[2]; | 
| 133 | chrisfen | 417 | ub0y = matrix(1,0)*refUnit[0] + matrix(1,1)*refUnit[1] | 
| 134 |  |  | + matrix(1,2)*refUnit[2]; | 
| 135 |  |  | ub0z = matrix(2,0)*refUnit[0] + matrix(2,1)*refUnit[1] | 
| 136 |  |  | + matrix(2,2)*refUnit[2]; | 
| 137 |  |  |  | 
| 138 |  |  | normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); | 
| 139 |  |  | ub0x = ub0x/normalize; | 
| 140 |  |  | ub0y = ub0y/normalize; | 
| 141 |  |  | ub0z = ub0z/normalize; | 
| 142 |  |  |  | 
| 143 |  |  | // Theta is the dot product of the reference and new z-axes | 
| 144 |  |  | theta = acos(ub0z); | 
| 145 |  |  |  | 
| 146 |  |  | return; | 
| 147 | gezelter | 2 | } | 
| 148 | chrisfen | 417 |  | 
| 149 |  |  | void Restraints::Calc_body_omegaVal(double zAngle){ | 
| 150 |  |  | double zRotator[3][3]; | 
| 151 |  |  | double tempOmega; | 
| 152 |  |  | double wholeTwoPis; | 
| 153 |  |  | // Use the omega accumulated from the rotation propagation | 
| 154 |  |  | omega = zAngle; | 
| 155 |  |  |  | 
| 156 |  |  | // translate the omega into a range between -PI and PI | 
| 157 |  |  | if (omega < -PI){ | 
| 158 |  |  | tempOmega = omega / -TWO_PI; | 
| 159 |  |  | wholeTwoPis = floor(tempOmega); | 
| 160 |  |  | tempOmega = omega + TWO_PI*wholeTwoPis; | 
| 161 |  |  | if (tempOmega < -PI) | 
| 162 |  |  | omega = tempOmega + TWO_PI; | 
| 163 |  |  | else | 
| 164 |  |  | omega = tempOmega; | 
| 165 | chrisfen | 221 | } | 
| 166 | chrisfen | 417 | if (omega > PI){ | 
| 167 |  |  | tempOmega = omega / TWO_PI; | 
| 168 |  |  | wholeTwoPis = floor(tempOmega); | 
| 169 |  |  | tempOmega = omega - TWO_PI*wholeTwoPis; | 
| 170 |  |  | if (tempOmega > PI) | 
| 171 |  |  | omega = tempOmega - TWO_PI; | 
| 172 |  |  | else | 
| 173 |  |  | omega = tempOmega; | 
| 174 | chrisfen | 221 | } | 
| 175 |  |  |  | 
| 176 | chrisfen | 417 | vb0x = sin(omega); | 
| 177 |  |  | vb0y = cos(omega); | 
| 178 |  |  | vb0z = 0.0; | 
| 179 |  |  |  | 
| 180 |  |  | normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); | 
| 181 |  |  | vb0x = vb0x/normalize; | 
| 182 |  |  | vb0y = vb0y/normalize; | 
| 183 |  |  | vb0z = vb0z/normalize; | 
| 184 |  |  |  | 
| 185 |  |  | return; | 
| 186 |  |  | } | 
| 187 |  |  |  | 
| 188 |  |  | double Restraints::Calc_Restraint_Forces(){ | 
| 189 |  |  | SimInfo::MoleculeIterator mi; | 
| 190 |  |  | Molecule* mol; | 
| 191 |  |  | Molecule::IntegrableObjectIterator ii; | 
| 192 |  |  | StuntDouble* integrableObject; | 
| 193 |  |  | Vector3d pos; | 
| 194 |  |  | RotMat3x3d A; | 
| 195 |  |  | double refPos[3]; | 
| 196 |  |  | double refVec[3]; | 
| 197 |  |  | double tolerance; | 
| 198 |  |  | double tempPotent; | 
| 199 |  |  | double factor; | 
| 200 |  |  | double spaceTrq[3]; | 
| 201 |  |  | double omegaPass; | 
| 202 |  |  | GenericData* data; | 
| 203 |  |  | DoubleGenericData* doubleData; | 
| 204 |  |  |  | 
| 205 |  |  | tolerance = 5.72957795131e-7; | 
| 206 |  |  |  | 
| 207 |  |  | harmPotent = 0.0;  // zero out the global harmonic potential variable | 
| 208 |  |  |  | 
| 209 |  |  | factor = 1 - pow(lambdaValue, lambdaK); | 
| 210 |  |  |  | 
| 211 |  |  | for (mol = info_->beginMolecule(mi); mol != NULL; | 
| 212 |  |  | mol = info_->nextMolecule(mi)) { | 
| 213 |  |  | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 214 |  |  | integrableObject != NULL; | 
| 215 |  |  | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 216 |  |  |  | 
| 217 |  |  | // obtain the current and reference positions | 
| 218 |  |  | pos = integrableObject->getPos(); | 
| 219 |  |  |  | 
| 220 |  |  | data = integrableObject->getPropertyByName("refPosX"); | 
| 221 |  |  | if (data){ | 
| 222 |  |  | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 223 |  |  | if (!doubleData){ | 
| 224 |  |  | cerr << "Can't obtain refPosX from StuntDouble\n"; | 
| 225 |  |  | return 0.0; | 
| 226 |  |  | } | 
| 227 |  |  | else refPos[0] = doubleData->getData(); | 
| 228 |  |  | } | 
| 229 |  |  | data = integrableObject->getPropertyByName("refPosY"); | 
| 230 |  |  | if (data){ | 
| 231 |  |  | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 232 |  |  | if (!doubleData){ | 
| 233 |  |  | cerr << "Can't obtain refPosY from StuntDouble\n"; | 
| 234 |  |  | return 0.0; | 
| 235 |  |  | } | 
| 236 |  |  | else refPos[1] = doubleData->getData(); | 
| 237 |  |  | } | 
| 238 |  |  | data = integrableObject->getPropertyByName("refPosZ"); | 
| 239 |  |  | if (data){ | 
| 240 |  |  | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 241 |  |  | if (!doubleData){ | 
| 242 |  |  | cerr << "Can't obtain refPosZ from StuntDouble\n"; | 
| 243 |  |  | return 0.0; | 
| 244 |  |  | } | 
| 245 |  |  | else refPos[2] = doubleData->getData(); | 
| 246 |  |  | } | 
| 247 |  |  |  | 
| 248 |  |  | // calculate the displacement | 
| 249 |  |  | Calc_rVal( pos, refPos ); | 
| 250 |  |  |  | 
| 251 |  |  | // calculate the derivatives | 
| 252 |  |  | dVdrx = -kDist*delRx; | 
| 253 |  |  | dVdry = -kDist*delRy; | 
| 254 |  |  | dVdrz = -kDist*delRz; | 
| 255 |  |  |  | 
| 256 |  |  | // next we calculate the restraint forces | 
| 257 |  |  | restraintFrc[0] = dVdrx; | 
| 258 |  |  | restraintFrc[1] = dVdry; | 
| 259 |  |  | restraintFrc[2] = dVdrz; | 
| 260 |  |  | tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); | 
| 261 |  |  |  | 
| 262 |  |  | // apply the lambda scaling factor to the forces | 
| 263 |  |  | for (j = 0; j < 3; j++) restraintFrc[j] *= factor; | 
| 264 |  |  |  | 
| 265 |  |  | // and add the temporary force to the total force | 
| 266 |  |  | integrableObject->addFrc(restraintFrc); | 
| 267 |  |  |  | 
| 268 |  |  | // if the particle is directional, we accumulate the rot. restraints | 
| 269 |  |  | if (integrableObject->isDirectional()){ | 
| 270 |  |  |  | 
| 271 |  |  | // get the current rotation matrix and reference vector | 
| 272 |  |  | A = integrableObject->getA(); | 
| 273 |  |  |  | 
| 274 |  |  | data = integrableObject->getPropertyByName("refVectorX"); | 
| 275 |  |  | if (data){ | 
| 276 |  |  | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 277 |  |  | if (!doubleData){ | 
| 278 |  |  | cerr << "Can't obtain refVectorX from StuntDouble\n"; | 
| 279 |  |  | return 0.0; | 
| 280 |  |  | } | 
| 281 |  |  | else refVec[0] = doubleData->getData(); | 
| 282 |  |  | } | 
| 283 |  |  | data = integrableObject->getPropertyByName("refVectorY"); | 
| 284 |  |  | if (data){ | 
| 285 |  |  | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 286 |  |  | if (!doubleData){ | 
| 287 |  |  | cerr << "Can't obtain refVectorY from StuntDouble\n"; | 
| 288 |  |  | return 0.0; | 
| 289 |  |  | } | 
| 290 |  |  | else refVec[1] = doubleData->getData(); | 
| 291 |  |  | } | 
| 292 |  |  | data = integrableObject->getPropertyByName("refVectorZ"); | 
| 293 |  |  | if (data){ | 
| 294 |  |  | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 295 |  |  | if (!doubleData){ | 
| 296 |  |  | cerr << "Can't obtain refVectorZ from StuntDouble\n"; | 
| 297 |  |  | return 0.0; | 
| 298 |  |  | } | 
| 299 |  |  | else refVec[2] = doubleData->getData(); | 
| 300 |  |  | } | 
| 301 |  |  |  | 
| 302 |  |  | // calculate the theta and omega displacements | 
| 303 |  |  | Calc_body_thetaVal( A, refVec ); | 
| 304 |  |  | omegaPass = integrableObject->getZangle(); | 
| 305 |  |  | Calc_body_omegaVal( omegaPass ); | 
| 306 |  |  |  | 
| 307 |  |  | // uTx... and vTx... are the body-fixed z and y unit vectors | 
| 308 |  |  | uTx = 0.0; | 
| 309 |  |  | uTy = 0.0; | 
| 310 |  |  | uTz = 1.0; | 
| 311 |  |  | vTx = 0.0; | 
| 312 |  |  | vTy = 1.0; | 
| 313 |  |  | vTz = 0.0; | 
| 314 |  |  |  | 
| 315 |  |  | dVdux = 0.0; | 
| 316 |  |  | dVduy = 0.0; | 
| 317 |  |  | dVduz = 0.0; | 
| 318 |  |  | dVdvx = 0.0; | 
| 319 |  |  | dVdvy = 0.0; | 
| 320 |  |  | dVdvz = 0.0; | 
| 321 |  |  |  | 
| 322 |  |  | if (fabs(theta) > tolerance) { | 
| 323 |  |  | dVdux = -(kTheta*theta/sin(theta))*ub0x; | 
| 324 |  |  | dVduy = -(kTheta*theta/sin(theta))*ub0y; | 
| 325 |  |  | dVduz = -(kTheta*theta/sin(theta))*ub0z; | 
| 326 |  |  | } | 
| 327 |  |  |  | 
| 328 |  |  | if (fabs(omega) > tolerance) { | 
| 329 |  |  | dVdvx = -(kOmega*omega/sin(omega))*vb0x; | 
| 330 |  |  | dVdvy = -(kOmega*omega/sin(omega))*vb0y; | 
| 331 |  |  | dVdvz = -(kOmega*omega/sin(omega))*vb0z; | 
| 332 |  |  | } | 
| 333 |  |  |  | 
| 334 |  |  | // next we calculate the restraint torques | 
| 335 |  |  | restraintTrq[0] = 0.0; | 
| 336 |  |  | restraintTrq[1] = 0.0; | 
| 337 |  |  | restraintTrq[2] = 0.0; | 
| 338 |  |  |  | 
| 339 |  |  | if (fabs(omega) > tolerance) { | 
| 340 |  |  | restraintTrq[0] += 0.0; | 
| 341 |  |  | restraintTrq[1] += 0.0; | 
| 342 |  |  | restraintTrq[2] += vTy*dVdvx; | 
| 343 |  |  | tempPotent += 0.5*(kOmega*omega*omega); | 
| 344 |  |  | } | 
| 345 |  |  | if (fabs(theta) > tolerance) { | 
| 346 |  |  | restraintTrq[0] += (uTz*dVduy); | 
| 347 |  |  | restraintTrq[1] += -(uTz*dVdux); | 
| 348 |  |  | restraintTrq[2] += 0.0; | 
| 349 |  |  | tempPotent += 0.5*(kTheta*theta*theta); | 
| 350 |  |  | } | 
| 351 |  |  |  | 
| 352 |  |  | // apply the lambda scaling factor to these torques | 
| 353 |  |  | for (j = 0; j < 3; j++) restraintTrq[j] *= factor; | 
| 354 |  |  |  | 
| 355 |  |  | // now we need to convert from body-fixed to space-fixed torques | 
| 356 |  |  | spaceTrq[0] = A(0,0)*restraintTrq[0] + A(1,0)*restraintTrq[1] | 
| 357 |  |  | + A(2,0)*restraintTrq[2]; | 
| 358 |  |  | spaceTrq[1] = A(0,1)*restraintTrq[0] + A(1,1)*restraintTrq[1] | 
| 359 |  |  | + A(2,1)*restraintTrq[2]; | 
| 360 |  |  | spaceTrq[2] = A(0,2)*restraintTrq[0] + A(1,2)*restraintTrq[1] | 
| 361 |  |  | + A(2,2)*restraintTrq[2]; | 
| 362 |  |  |  | 
| 363 |  |  | // now pass this temporary torque vector to the total torque | 
| 364 |  |  | integrableObject->addTrq(spaceTrq); | 
| 365 |  |  | } | 
| 366 |  |  |  | 
| 367 |  |  | // update the total harmonic potential with this object's contribution | 
| 368 |  |  | harmPotent += tempPotent; | 
| 369 | chrisfen | 221 | } | 
| 370 |  |  |  | 
| 371 | gezelter | 2 | } | 
| 372 | chrisfen | 417 |  | 
| 373 |  |  | // we can finish by returning the appropriately scaled potential energy | 
| 374 |  |  | tempPotent = harmPotent * factor; | 
| 375 |  |  |  | 
| 376 |  |  | return tempPotent; | 
| 377 |  |  |  | 
| 378 | gezelter | 2 | } | 
| 379 | chrisfen | 221 |  | 
| 380 | chrisfen | 417 | }// end namespace oopse |