| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
* publication of scientific results based in part on use of the |
| 11 |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
* the article in which the program was described (Matthew |
| 13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
* |
| 18 |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
* notice, this list of conditions and the following disclaimer. |
| 20 |
* |
| 21 |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
* documentation and/or other materials provided with the |
| 24 |
* distribution. |
| 25 |
* |
| 26 |
* This software is provided "AS IS," without a warranty of any |
| 27 |
* kind. All express or implied conditions, representations and |
| 28 |
* warranties, including any implied warranty of merchantability, |
| 29 |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
* be liable for any damages suffered by licensee as a result of |
| 32 |
* using, modifying or distributing the software or its |
| 33 |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
* damages, however caused and regardless of the theory of liability, |
| 37 |
* arising out of the use of or inability to use software, even if the |
| 38 |
* University of Notre Dame has been advised of the possibility of |
| 39 |
* such damages. |
| 40 |
*/ |
| 41 |
|
| 42 |
#include <stdlib.h> |
| 43 |
#include <math.h> |
| 44 |
|
| 45 |
using namespace std; |
| 46 |
|
| 47 |
#include "restraints/Restraints.hpp" |
| 48 |
#include "primitives/Molecule.hpp" |
| 49 |
#include "utils/simError.h" |
| 50 |
|
| 51 |
#define PI 3.14159265359 |
| 52 |
#define TWO_PI 6.28318530718 |
| 53 |
|
| 54 |
namespace oopse { |
| 55 |
|
| 56 |
Restraints::Restraints(SimInfo* info, double lambdaVal, double lambdaExp){ |
| 57 |
info_ = info; |
| 58 |
Globals* simParam = info_->getSimParams(); |
| 59 |
|
| 60 |
lambdaValue = lambdaVal; |
| 61 |
lambdaK = lambdaExp; |
| 62 |
|
| 63 |
if (simParam->getUseSolidThermInt()) { |
| 64 |
if (simParam->haveDistSpringConst()) { |
| 65 |
kDist = simParam->getDistSpringConst(); |
| 66 |
} |
| 67 |
else{ |
| 68 |
kDist = 6.0; |
| 69 |
sprintf(painCave.errMsg, |
| 70 |
"ThermoIntegration Warning: the spring constant for the\n" |
| 71 |
"\ttranslational restraint was not specified. OOPSE will use\n" |
| 72 |
"\ta default value of %f. To set it to something else, use\n" |
| 73 |
"\tthe thermIntDistSpringConst variable.\n", |
| 74 |
kDist); |
| 75 |
painCave.isFatal = 0; |
| 76 |
simError(); |
| 77 |
} |
| 78 |
if (simParam->haveThetaSpringConst()) { |
| 79 |
kTheta = simParam->getThetaSpringConst(); |
| 80 |
} |
| 81 |
else{ |
| 82 |
kTheta = 7.5; |
| 83 |
sprintf(painCave.errMsg, |
| 84 |
"ThermoIntegration Warning: the spring constant for the\n" |
| 85 |
"\tdeflection orientational restraint was not specified.\n" |
| 86 |
"\tOOPSE will use a default value of %f. To set it to\n" |
| 87 |
"\tsomething else, use the thermIntThetaSpringConst variable.\n", |
| 88 |
kTheta); |
| 89 |
painCave.isFatal = 0; |
| 90 |
simError(); |
| 91 |
} |
| 92 |
if (simParam->haveOmegaSpringConst()) { |
| 93 |
kOmega = simParam->getOmegaSpringConst(); |
| 94 |
} |
| 95 |
else{ |
| 96 |
kOmega = 13.5; |
| 97 |
sprintf(painCave.errMsg, |
| 98 |
"ThermoIntegration Warning: the spring constant for the\n" |
| 99 |
"\tspin orientational restraint was not specified. OOPSE\n" |
| 100 |
"\twill use a default value of %f. To set it to something\n" |
| 101 |
"\telse, use the thermIntOmegaSpringConst variable.\n", |
| 102 |
kOmega); |
| 103 |
painCave.isFatal = 0; |
| 104 |
simError(); |
| 105 |
} |
| 106 |
} |
| 107 |
|
| 108 |
// build a RestReader and read in important information |
| 109 |
restRead_ = new RestReader(info_); |
| 110 |
restRead_->readIdealCrystal(); |
| 111 |
restRead_->readZangle(); |
| 112 |
|
| 113 |
delete restRead_; |
| 114 |
restRead_ = NULL; |
| 115 |
|
| 116 |
} |
| 117 |
|
| 118 |
Restraints::~Restraints(){ |
| 119 |
} |
| 120 |
|
| 121 |
void Restraints::Calc_rVal(Vector3d &position, double refPosition[3]){ |
| 122 |
delRx = position.x() - refPosition[0]; |
| 123 |
delRy = position.y() - refPosition[1]; |
| 124 |
delRz = position.z() - refPosition[2]; |
| 125 |
|
| 126 |
return; |
| 127 |
} |
| 128 |
|
| 129 |
void Restraints::Calc_body_thetaVal(RotMat3x3d &matrix, double refUnit[3]){ |
| 130 |
ub0x = matrix(0,0)*refUnit[0] + matrix(0,1)*refUnit[1] |
| 131 |
+ matrix(0,2)*refUnit[2]; |
| 132 |
ub0y = matrix(1,0)*refUnit[0] + matrix(1,1)*refUnit[1] |
| 133 |
+ matrix(1,2)*refUnit[2]; |
| 134 |
ub0z = matrix(2,0)*refUnit[0] + matrix(2,1)*refUnit[1] |
| 135 |
+ matrix(2,2)*refUnit[2]; |
| 136 |
|
| 137 |
normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); |
| 138 |
ub0x = ub0x/normalize; |
| 139 |
ub0y = ub0y/normalize; |
| 140 |
ub0z = ub0z/normalize; |
| 141 |
|
| 142 |
// Theta is the dot product of the reference and new z-axes |
| 143 |
theta = acos(ub0z); |
| 144 |
|
| 145 |
return; |
| 146 |
} |
| 147 |
|
| 148 |
void Restraints::Calc_body_omegaVal(double zAngle){ |
| 149 |
double zRotator[3][3]; |
| 150 |
double tempOmega; |
| 151 |
double wholeTwoPis; |
| 152 |
// Use the omega accumulated from the rotation propagation |
| 153 |
omega = zAngle; |
| 154 |
|
| 155 |
// translate the omega into a range between -PI and PI |
| 156 |
if (omega < -PI){ |
| 157 |
tempOmega = omega / -TWO_PI; |
| 158 |
wholeTwoPis = floor(tempOmega); |
| 159 |
tempOmega = omega + TWO_PI*wholeTwoPis; |
| 160 |
if (tempOmega < -PI) |
| 161 |
omega = tempOmega + TWO_PI; |
| 162 |
else |
| 163 |
omega = tempOmega; |
| 164 |
} |
| 165 |
if (omega > PI){ |
| 166 |
tempOmega = omega / TWO_PI; |
| 167 |
wholeTwoPis = floor(tempOmega); |
| 168 |
tempOmega = omega - TWO_PI*wholeTwoPis; |
| 169 |
if (tempOmega > PI) |
| 170 |
omega = tempOmega - TWO_PI; |
| 171 |
else |
| 172 |
omega = tempOmega; |
| 173 |
} |
| 174 |
|
| 175 |
vb0x = sin(omega); |
| 176 |
vb0y = cos(omega); |
| 177 |
vb0z = 0.0; |
| 178 |
|
| 179 |
normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); |
| 180 |
vb0x = vb0x/normalize; |
| 181 |
vb0y = vb0y/normalize; |
| 182 |
vb0z = vb0z/normalize; |
| 183 |
|
| 184 |
return; |
| 185 |
} |
| 186 |
|
| 187 |
double Restraints::Calc_Restraint_Forces(){ |
| 188 |
SimInfo::MoleculeIterator mi; |
| 189 |
Molecule* mol; |
| 190 |
Molecule::IntegrableObjectIterator ii; |
| 191 |
StuntDouble* integrableObject; |
| 192 |
Vector3d pos; |
| 193 |
RotMat3x3d A; |
| 194 |
double refPos[3]; |
| 195 |
double refVec[3]; |
| 196 |
double tolerance; |
| 197 |
double tempPotent; |
| 198 |
double factor; |
| 199 |
double spaceTrq[3]; |
| 200 |
double omegaPass; |
| 201 |
GenericData* data; |
| 202 |
DoubleGenericData* doubleData; |
| 203 |
|
| 204 |
tolerance = 5.72957795131e-7; |
| 205 |
|
| 206 |
harmPotent = 0.0; // zero out the global harmonic potential variable |
| 207 |
|
| 208 |
factor = 1 - pow(lambdaValue, lambdaK); |
| 209 |
|
| 210 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 211 |
mol = info_->nextMolecule(mi)) { |
| 212 |
for (integrableObject = mol->beginIntegrableObject(ii); |
| 213 |
integrableObject != NULL; |
| 214 |
integrableObject = mol->nextIntegrableObject(ii)) { |
| 215 |
|
| 216 |
// obtain the current and reference positions |
| 217 |
pos = integrableObject->getPos(); |
| 218 |
|
| 219 |
data = integrableObject->getPropertyByName("refPosX"); |
| 220 |
if (data){ |
| 221 |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 222 |
if (!doubleData){ |
| 223 |
cerr << "Can't obtain refPosX from StuntDouble\n"; |
| 224 |
return 0.0; |
| 225 |
} |
| 226 |
else refPos[0] = doubleData->getData(); |
| 227 |
} |
| 228 |
data = integrableObject->getPropertyByName("refPosY"); |
| 229 |
if (data){ |
| 230 |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 231 |
if (!doubleData){ |
| 232 |
cerr << "Can't obtain refPosY from StuntDouble\n"; |
| 233 |
return 0.0; |
| 234 |
} |
| 235 |
else refPos[1] = doubleData->getData(); |
| 236 |
} |
| 237 |
data = integrableObject->getPropertyByName("refPosZ"); |
| 238 |
if (data){ |
| 239 |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 240 |
if (!doubleData){ |
| 241 |
cerr << "Can't obtain refPosZ from StuntDouble\n"; |
| 242 |
return 0.0; |
| 243 |
} |
| 244 |
else refPos[2] = doubleData->getData(); |
| 245 |
} |
| 246 |
|
| 247 |
// calculate the displacement |
| 248 |
Calc_rVal( pos, refPos ); |
| 249 |
|
| 250 |
// calculate the derivatives |
| 251 |
dVdrx = -kDist*delRx; |
| 252 |
dVdry = -kDist*delRy; |
| 253 |
dVdrz = -kDist*delRz; |
| 254 |
|
| 255 |
// next we calculate the restraint forces |
| 256 |
restraintFrc[0] = dVdrx; |
| 257 |
restraintFrc[1] = dVdry; |
| 258 |
restraintFrc[2] = dVdrz; |
| 259 |
tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); |
| 260 |
|
| 261 |
// apply the lambda scaling factor to the forces |
| 262 |
for (j = 0; j < 3; j++) restraintFrc[j] *= factor; |
| 263 |
|
| 264 |
// and add the temporary force to the total force |
| 265 |
integrableObject->addFrc(restraintFrc); |
| 266 |
|
| 267 |
// if the particle is directional, we accumulate the rot. restraints |
| 268 |
if (integrableObject->isDirectional()){ |
| 269 |
|
| 270 |
// get the current rotation matrix and reference vector |
| 271 |
A = integrableObject->getA(); |
| 272 |
|
| 273 |
data = integrableObject->getPropertyByName("refVectorX"); |
| 274 |
if (data){ |
| 275 |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 276 |
if (!doubleData){ |
| 277 |
cerr << "Can't obtain refVectorX from StuntDouble\n"; |
| 278 |
return 0.0; |
| 279 |
} |
| 280 |
else refVec[0] = doubleData->getData(); |
| 281 |
} |
| 282 |
data = integrableObject->getPropertyByName("refVectorY"); |
| 283 |
if (data){ |
| 284 |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 285 |
if (!doubleData){ |
| 286 |
cerr << "Can't obtain refVectorY from StuntDouble\n"; |
| 287 |
return 0.0; |
| 288 |
} |
| 289 |
else refVec[1] = doubleData->getData(); |
| 290 |
} |
| 291 |
data = integrableObject->getPropertyByName("refVectorZ"); |
| 292 |
if (data){ |
| 293 |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 294 |
if (!doubleData){ |
| 295 |
cerr << "Can't obtain refVectorZ from StuntDouble\n"; |
| 296 |
return 0.0; |
| 297 |
} |
| 298 |
else refVec[2] = doubleData->getData(); |
| 299 |
} |
| 300 |
|
| 301 |
// calculate the theta and omega displacements |
| 302 |
Calc_body_thetaVal( A, refVec ); |
| 303 |
omegaPass = integrableObject->getZangle(); |
| 304 |
Calc_body_omegaVal( omegaPass ); |
| 305 |
|
| 306 |
// uTx... and vTx... are the body-fixed z and y unit vectors |
| 307 |
uTx = 0.0; |
| 308 |
uTy = 0.0; |
| 309 |
uTz = 1.0; |
| 310 |
vTx = 0.0; |
| 311 |
vTy = 1.0; |
| 312 |
vTz = 0.0; |
| 313 |
|
| 314 |
dVdux = 0.0; |
| 315 |
dVduy = 0.0; |
| 316 |
dVduz = 0.0; |
| 317 |
dVdvx = 0.0; |
| 318 |
dVdvy = 0.0; |
| 319 |
dVdvz = 0.0; |
| 320 |
|
| 321 |
if (fabs(theta) > tolerance) { |
| 322 |
dVdux = -(kTheta*theta/sin(theta))*ub0x; |
| 323 |
dVduy = -(kTheta*theta/sin(theta))*ub0y; |
| 324 |
dVduz = -(kTheta*theta/sin(theta))*ub0z; |
| 325 |
} |
| 326 |
|
| 327 |
if (fabs(omega) > tolerance) { |
| 328 |
dVdvx = -(kOmega*omega/sin(omega))*vb0x; |
| 329 |
dVdvy = -(kOmega*omega/sin(omega))*vb0y; |
| 330 |
dVdvz = -(kOmega*omega/sin(omega))*vb0z; |
| 331 |
} |
| 332 |
|
| 333 |
// next we calculate the restraint torques |
| 334 |
restraintTrq[0] = 0.0; |
| 335 |
restraintTrq[1] = 0.0; |
| 336 |
restraintTrq[2] = 0.0; |
| 337 |
|
| 338 |
if (fabs(omega) > tolerance) { |
| 339 |
restraintTrq[0] += 0.0; |
| 340 |
restraintTrq[1] += 0.0; |
| 341 |
restraintTrq[2] += vTy*dVdvx; |
| 342 |
tempPotent += 0.5*(kOmega*omega*omega); |
| 343 |
} |
| 344 |
if (fabs(theta) > tolerance) { |
| 345 |
restraintTrq[0] += (uTz*dVduy); |
| 346 |
restraintTrq[1] += -(uTz*dVdux); |
| 347 |
restraintTrq[2] += 0.0; |
| 348 |
tempPotent += 0.5*(kTheta*theta*theta); |
| 349 |
} |
| 350 |
|
| 351 |
// apply the lambda scaling factor to these torques |
| 352 |
for (j = 0; j < 3; j++) restraintTrq[j] *= factor; |
| 353 |
|
| 354 |
// now we need to convert from body-fixed to space-fixed torques |
| 355 |
spaceTrq[0] = A(0,0)*restraintTrq[0] + A(1,0)*restraintTrq[1] |
| 356 |
+ A(2,0)*restraintTrq[2]; |
| 357 |
spaceTrq[1] = A(0,1)*restraintTrq[0] + A(1,1)*restraintTrq[1] |
| 358 |
+ A(2,1)*restraintTrq[2]; |
| 359 |
spaceTrq[2] = A(0,2)*restraintTrq[0] + A(1,2)*restraintTrq[1] |
| 360 |
+ A(2,2)*restraintTrq[2]; |
| 361 |
|
| 362 |
// now pass this temporary torque vector to the total torque |
| 363 |
integrableObject->addTrq(spaceTrq); |
| 364 |
} |
| 365 |
|
| 366 |
// update the total harmonic potential with this object's contribution |
| 367 |
harmPotent += tempPotent; |
| 368 |
} |
| 369 |
|
| 370 |
} |
| 371 |
|
| 372 |
// we can finish by returning the appropriately scaled potential energy |
| 373 |
tempPotent = harmPotent * factor; |
| 374 |
|
| 375 |
return tempPotent; |
| 376 |
|
| 377 |
} |
| 378 |
|
| 379 |
}// end namespace oopse |