| 1 | // Thermodynamic integration is not multiprocessor friendly right now | 
| 2 |  | 
| 3 | #include <iostream> | 
| 4 | #include <stdlib.h> | 
| 5 | #include <cstdio> | 
| 6 | #include <fstream> | 
| 7 | #include <iomanip> | 
| 8 | #include <string> | 
| 9 | #include <cstring> | 
| 10 | #include <math.h> | 
| 11 |  | 
| 12 | using namespace std; | 
| 13 |  | 
| 14 | #include "restraints/Restraints.hpp" | 
| 15 | #include "brains/SimInfo.hpp" | 
| 16 | #include "utils/simError.h" | 
| 17 | #include "io/basic_ifstrstream.hpp" | 
| 18 |  | 
| 19 | #ifdef IS_MPI | 
| 20 | #include<mpi.h> | 
| 21 | #include "brains/mpiSimulation.hpp" | 
| 22 | #endif // is_mpi | 
| 23 |  | 
| 24 | #define PI 3.14159265359 | 
| 25 | #define TWO_PI 6.28318530718 | 
| 26 |  | 
| 27 | Restraints::Restraints(double lambdaVal, double lambdaExp){ | 
| 28 | lambdaValue = lambdaVal; | 
| 29 | lambdaK = lambdaExp; | 
| 30 | vector<double> resConsts; | 
| 31 | const char *jolt = " \t\n;,"; | 
| 32 |  | 
| 33 | #ifdef IS_MPI | 
| 34 | if(worldRank == 0 ){ | 
| 35 | #endif // is_mpi | 
| 36 |  | 
| 37 | strcpy(springName, "HarmSpringConsts.txt"); | 
| 38 |  | 
| 39 | ifstream springs(springName); | 
| 40 |  | 
| 41 | if (!springs) { | 
| 42 | sprintf(painCave.errMsg, | 
| 43 | "Unable to open HarmSpringConsts.txt for reading, so the\n" | 
| 44 | "\tdefault spring constants will be loaded. If you want\n" | 
| 45 | "\tto specify spring constants, include a three line\n" | 
| 46 | "\tHarmSpringConsts.txt file in the execution directory.\n"); | 
| 47 | painCave.severity = OOPSE_WARNING; | 
| 48 | painCave.isFatal = 0; | 
| 49 | simError(); | 
| 50 |  | 
| 51 | // load default spring constants | 
| 52 | kDist  = 6;  // spring constant in units of kcal/(mol*ang^2) | 
| 53 | kTheta = 7.5;   // in units of kcal/mol | 
| 54 | kOmega = 13.5;   // in units of kcal/mol | 
| 55 | } else  { | 
| 56 |  | 
| 57 | springs.getline(inLine,999,'\n'); | 
| 58 | // the file is blank! | 
| 59 | if (springs.eof()){ | 
| 60 | sprintf(painCave.errMsg, | 
| 61 | "HarmSpringConsts.txt file is not valid.\n" | 
| 62 | "\tThe file should contain four rows, the last three containing\n" | 
| 63 | "\ta label and the spring constant value. They should be listed\n" | 
| 64 | "\tin the following order: kDist (positional restrant), kTheta\n" | 
| 65 | "\t(rot. restraint: deflection of z-axis), and kOmega (rot.\n" | 
| 66 | "\trestraint: rotation about the z-axis).\n"); | 
| 67 | painCave.severity = OOPSE_ERROR; | 
| 68 | painCave.isFatal = 1; | 
| 69 | simError(); | 
| 70 | } | 
| 71 | // read in spring constants and check to make sure it is a valid file | 
| 72 | springs.getline(inLine,999,'\n'); | 
| 73 | while (!springs.eof()){ | 
| 74 | if (NULL != inLine){ | 
| 75 | token = strtok(inLine,jolt); | 
| 76 | token = strtok(NULL,jolt); | 
| 77 | if (NULL != token){ | 
| 78 | strcpy(inValue,token); | 
| 79 | resConsts.push_back(atof(inValue)); | 
| 80 | } | 
| 81 | } | 
| 82 | springs.getline(inLine,999,'\n'); | 
| 83 | } | 
| 84 | if (resConsts.size() == 3){ | 
| 85 | kDist = resConsts[0]; | 
| 86 | kTheta = resConsts[1]; | 
| 87 | kOmega = resConsts[2]; | 
| 88 | } | 
| 89 | else { | 
| 90 | sprintf(painCave.errMsg, | 
| 91 | "HarmSpringConsts.txt file is not valid.\n" | 
| 92 | "\tThe file should contain four rows, the last three containing\n" | 
| 93 | "\ta label and the spring constant value. They should be listed\n" | 
| 94 | "\tin the following order: kDist (positional restrant), kTheta\n" | 
| 95 | "\t(rot. restraint: deflection of z-axis), and kOmega (rot.\n" | 
| 96 | "\trestraint: rotation about the z-axis).\n"); | 
| 97 | painCave.severity = OOPSE_ERROR; | 
| 98 | painCave.isFatal = 1; | 
| 99 | simError(); | 
| 100 | } | 
| 101 | } | 
| 102 | #ifdef IS_MPI | 
| 103 | } | 
| 104 |  | 
| 105 | MPI_Bcast(&kDist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); | 
| 106 | MPI_Bcast(&kTheta, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); | 
| 107 | MPI_Bcast(&kOmega, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); | 
| 108 |  | 
| 109 | sprintf( checkPointMsg, | 
| 110 | "Sucessfully opened and read spring file.\n"); | 
| 111 | MPIcheckPoint(); | 
| 112 |  | 
| 113 | #endif // is_mpi | 
| 114 |  | 
| 115 | sprintf(painCave.errMsg, | 
| 116 | "The spring constants for thermodynamic integration are:\n" | 
| 117 | "\tkDist = %lf\n" | 
| 118 | "\tkTheta = %lf\n" | 
| 119 | "\tkOmega = %lf\n", kDist, kTheta, kOmega); | 
| 120 | painCave.severity = OOPSE_INFO; | 
| 121 | painCave.isFatal = 0; | 
| 122 | simError(); | 
| 123 | } | 
| 124 |  | 
| 125 | Restraints::~Restraints(){ | 
| 126 | } | 
| 127 |  | 
| 128 | void Restraints::Calc_rVal(double position[3], double refPosition[3]){ | 
| 129 | delRx = position[0] - refPosition[0]; | 
| 130 | delRy = position[1] - refPosition[1]; | 
| 131 | delRz = position[2] - refPosition[2]; | 
| 132 |  | 
| 133 | return; | 
| 134 | } | 
| 135 |  | 
| 136 | void Restraints::Calc_body_thetaVal(double matrix[3][3], double refUnit[3]){ | 
| 137 | ub0x = matrix[0][0]*refUnit[0] + matrix[0][1]*refUnit[1] | 
| 138 | + matrix[0][2]*refUnit[2]; | 
| 139 | ub0y = matrix[1][0]*refUnit[0] + matrix[1][1]*refUnit[1] | 
| 140 | + matrix[1][2]*refUnit[2]; | 
| 141 | ub0z = matrix[2][0]*refUnit[0] + matrix[2][1]*refUnit[1] | 
| 142 | + matrix[2][2]*refUnit[2]; | 
| 143 |  | 
| 144 | normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); | 
| 145 | ub0x = ub0x/normalize; | 
| 146 | ub0y = ub0y/normalize; | 
| 147 | ub0z = ub0z/normalize; | 
| 148 |  | 
| 149 | // Theta is the dot product of the reference and new z-axes | 
| 150 | theta = acos(ub0z); | 
| 151 |  | 
| 152 | return; | 
| 153 | } | 
| 154 |  | 
| 155 | void Restraints::Calc_body_omegaVal(double matrix[3][3], double zAngle){ | 
| 156 | double zRotator[3][3]; | 
| 157 | double tempOmega; | 
| 158 | double wholeTwoPis; | 
| 159 | // Use the omega accumulated from the rotation propagation | 
| 160 | omega = zAngle; | 
| 161 |  | 
| 162 | // translate the omega into a range between -PI and PI | 
| 163 | if (omega < -PI){ | 
| 164 | tempOmega = omega / -TWO_PI; | 
| 165 | wholeTwoPis = floor(tempOmega); | 
| 166 | tempOmega = omega + TWO_PI*wholeTwoPis; | 
| 167 | if (tempOmega < -PI) | 
| 168 | omega = tempOmega + TWO_PI; | 
| 169 | else | 
| 170 | omega = tempOmega; | 
| 171 | } | 
| 172 | if (omega > PI){ | 
| 173 | tempOmega = omega / TWO_PI; | 
| 174 | wholeTwoPis = floor(tempOmega); | 
| 175 | tempOmega = omega - TWO_PI*wholeTwoPis; | 
| 176 | if (tempOmega > PI) | 
| 177 | omega = tempOmega - TWO_PI; | 
| 178 | else | 
| 179 | omega = tempOmega; | 
| 180 | } | 
| 181 |  | 
| 182 | vb0x = sin(omega); | 
| 183 | vb0y = cos(omega); | 
| 184 | vb0z = 0.0; | 
| 185 |  | 
| 186 | normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); | 
| 187 | vb0x = vb0x/normalize; | 
| 188 | vb0y = vb0y/normalize; | 
| 189 | vb0z = vb0z/normalize; | 
| 190 |  | 
| 191 | return; | 
| 192 | } | 
| 193 |  | 
| 194 | double Restraints::Calc_Restraint_Forces(vector<StuntDouble*> vecParticles){ | 
| 195 | double pos[3]; | 
| 196 | double A[3][3]; | 
| 197 | double refPos[3]; | 
| 198 | double refVec[3]; | 
| 199 | double tolerance; | 
| 200 | double tempPotent; | 
| 201 | double factor; | 
| 202 | double spaceTrq[3]; | 
| 203 | double omegaPass; | 
| 204 | GenericData* data; | 
| 205 | DoubleGenericData* doubleData; | 
| 206 |  | 
| 207 | tolerance = 5.72957795131e-7; | 
| 208 |  | 
| 209 | harmPotent = 0.0;  // zero out the global harmonic potential variable | 
| 210 |  | 
| 211 | factor = 1 - pow(lambdaValue, lambdaK); | 
| 212 |  | 
| 213 | for (i=0; i<vecParticles.size(); i++){ | 
| 214 | // obtain the current and reference positions | 
| 215 | vecParticles[i]->getPos(pos); | 
| 216 |  | 
| 217 | data = vecParticles[i]->getProperty("refPosX"); | 
| 218 | if (data){ | 
| 219 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 220 | if (!doubleData){ | 
| 221 | cerr << "Can't obtain refPosX from StuntDouble\n"; | 
| 222 | return 0.0; | 
| 223 | } | 
| 224 | else refPos[0] = doubleData->getData(); | 
| 225 | } | 
| 226 | data = vecParticles[i]->getProperty("refPosY"); | 
| 227 | if (data){ | 
| 228 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 229 | if (!doubleData){ | 
| 230 | cerr << "Can't obtain refPosY from StuntDouble\n"; | 
| 231 | return 0.0; | 
| 232 | } | 
| 233 | else refPos[1] = doubleData->getData(); | 
| 234 | } | 
| 235 | data = vecParticles[i]->getProperty("refPosZ"); | 
| 236 | if (data){ | 
| 237 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 238 | if (!doubleData){ | 
| 239 | cerr << "Can't obtain refPosZ from StuntDouble\n"; | 
| 240 | return 0.0; | 
| 241 | } | 
| 242 | else refPos[2] = doubleData->getData(); | 
| 243 | } | 
| 244 |  | 
| 245 | // calculate the displacement | 
| 246 | Calc_rVal( pos, refPos ); | 
| 247 |  | 
| 248 | // calculate the derivatives | 
| 249 | dVdrx = -kDist*delRx; | 
| 250 | dVdry = -kDist*delRy; | 
| 251 | dVdrz = -kDist*delRz; | 
| 252 |  | 
| 253 | // next we calculate the restraint forces | 
| 254 | restraintFrc[0] = dVdrx; | 
| 255 | restraintFrc[1] = dVdry; | 
| 256 | restraintFrc[2] = dVdrz; | 
| 257 | tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); | 
| 258 |  | 
| 259 | // apply the lambda scaling factor to the forces | 
| 260 | for (j = 0; j < 3; j++) restraintFrc[j] *= factor; | 
| 261 |  | 
| 262 | // and add the temporary force to the total force | 
| 263 | vecParticles[i]->addFrc(restraintFrc); | 
| 264 |  | 
| 265 | // if the particle is directional, we accumulate the rot. restraints | 
| 266 | if (vecParticles[i]->isDirectional()){ | 
| 267 |  | 
| 268 | // get the current rotation matrix and reference vector | 
| 269 | vecParticles[i]->getA(A); | 
| 270 |  | 
| 271 | data = vecParticles[i]->getProperty("refVectorX"); | 
| 272 | if (data){ | 
| 273 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 274 | if (!doubleData){ | 
| 275 | cerr << "Can't obtain refVectorX from StuntDouble\n"; | 
| 276 | return 0.0; | 
| 277 | } | 
| 278 | else refVec[0] = doubleData->getData(); | 
| 279 | } | 
| 280 | data = vecParticles[i]->getProperty("refVectorY"); | 
| 281 | if (data){ | 
| 282 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 283 | if (!doubleData){ | 
| 284 | cerr << "Can't obtain refVectorY from StuntDouble\n"; | 
| 285 | return 0.0; | 
| 286 | } | 
| 287 | else refVec[1] = doubleData->getData(); | 
| 288 | } | 
| 289 | data = vecParticles[i]->getProperty("refVectorZ"); | 
| 290 | if (data){ | 
| 291 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 292 | if (!doubleData){ | 
| 293 | cerr << "Can't obtain refVectorZ from StuntDouble\n"; | 
| 294 | return 0.0; | 
| 295 | } | 
| 296 | else refVec[2] = doubleData->getData(); | 
| 297 | } | 
| 298 |  | 
| 299 | // calculate the theta and omega displacements | 
| 300 | Calc_body_thetaVal( A, refVec ); | 
| 301 | omegaPass = vecParticles[i]->getZangle(); | 
| 302 | Calc_body_omegaVal( A, omegaPass ); | 
| 303 |  | 
| 304 | // uTx... and vTx... are the body-fixed z and y unit vectors | 
| 305 | uTx = 0.0; | 
| 306 | uTy = 0.0; | 
| 307 | uTz = 1.0; | 
| 308 | vTx = 0.0; | 
| 309 | vTy = 1.0; | 
| 310 | vTz = 0.0; | 
| 311 |  | 
| 312 | dVdux = 0.0; | 
| 313 | dVduy = 0.0; | 
| 314 | dVduz = 0.0; | 
| 315 | dVdvx = 0.0; | 
| 316 | dVdvy = 0.0; | 
| 317 | dVdvz = 0.0; | 
| 318 |  | 
| 319 | if (fabs(theta) > tolerance) { | 
| 320 | dVdux = -(kTheta*theta/sin(theta))*ub0x; | 
| 321 | dVduy = -(kTheta*theta/sin(theta))*ub0y; | 
| 322 | dVduz = -(kTheta*theta/sin(theta))*ub0z; | 
| 323 | } | 
| 324 |  | 
| 325 | if (fabs(omega) > tolerance) { | 
| 326 | dVdvx = -(kOmega*omega/sin(omega))*vb0x; | 
| 327 | dVdvy = -(kOmega*omega/sin(omega))*vb0y; | 
| 328 | dVdvz = -(kOmega*omega/sin(omega))*vb0z; | 
| 329 | } | 
| 330 |  | 
| 331 | // next we calculate the restraint torques | 
| 332 | restraintTrq[0] = 0.0; | 
| 333 | restraintTrq[1] = 0.0; | 
| 334 | restraintTrq[2] = 0.0; | 
| 335 |  | 
| 336 | if (fabs(omega) > tolerance) { | 
| 337 | restraintTrq[0] += 0.0; | 
| 338 | restraintTrq[1] += 0.0; | 
| 339 | restraintTrq[2] += vTy*dVdvx; | 
| 340 | tempPotent += 0.5*(kOmega*omega*omega); | 
| 341 | } | 
| 342 | if (fabs(theta) > tolerance) { | 
| 343 | restraintTrq[0] += (uTz*dVduy); | 
| 344 | restraintTrq[1] += -(uTz*dVdux); | 
| 345 | restraintTrq[2] += 0.0; | 
| 346 | tempPotent += 0.5*(kTheta*theta*theta); | 
| 347 | } | 
| 348 |  | 
| 349 | // apply the lambda scaling factor to these torques | 
| 350 | for (j = 0; j < 3; j++) restraintTrq[j] *= factor; | 
| 351 |  | 
| 352 | // now we need to convert from body-fixed torques to space-fixed torques | 
| 353 | spaceTrq[0] = A[0][0]*restraintTrq[0] + A[1][0]*restraintTrq[1] | 
| 354 | + A[2][0]*restraintTrq[2]; | 
| 355 | spaceTrq[1] = A[0][1]*restraintTrq[0] + A[1][1]*restraintTrq[1] | 
| 356 | + A[2][1]*restraintTrq[2]; | 
| 357 | spaceTrq[2] = A[0][2]*restraintTrq[0] + A[1][2]*restraintTrq[1] | 
| 358 | + A[2][2]*restraintTrq[2]; | 
| 359 |  | 
| 360 | // now pass this temporary torque vector to the total torque | 
| 361 | vecParticles[i]->addTrq(spaceTrq); | 
| 362 | } | 
| 363 |  | 
| 364 | // update the total harmonic potential with this object's contribution | 
| 365 | harmPotent += tempPotent; | 
| 366 | } | 
| 367 |  | 
| 368 | // we can finish by returning the appropriately scaled potential energy | 
| 369 | tempPotent = harmPotent * factor; | 
| 370 | return tempPotent; | 
| 371 | } | 
| 372 |  | 
| 373 | void Restraints::Write_zAngle_File(vector<StuntDouble*> vecParticles, | 
| 374 | int currTime, | 
| 375 | int nIntObj){ | 
| 376 |  | 
| 377 | char zOutName[200]; | 
| 378 |  | 
| 379 | std::cerr << nIntObj << " is the number of integrable objects\n"; | 
| 380 |  | 
| 381 | //#ifndef IS_MPI | 
| 382 |  | 
| 383 | strcpy(zOutName,"zAngle.ang"); | 
| 384 |  | 
| 385 | ofstream angleOut(zOutName); | 
| 386 | angleOut << currTime << ": omega values at this time\n"; | 
| 387 | for (i=0; i<vecParticles.size(); i++) { | 
| 388 | angleOut << vecParticles[i]->getZangle() << "\n"; | 
| 389 | } | 
| 390 |  | 
| 391 | return; | 
| 392 | } | 
| 393 |  | 
| 394 | double Restraints::getVharm(){ | 
| 395 | return harmPotent; | 
| 396 | } | 
| 397 |  |