| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | #include <stdlib.h> | 
| 43 | #include <math.h> | 
| 44 |  | 
| 45 | using namespace std; | 
| 46 |  | 
| 47 | #include "restraints/Restraints.hpp" | 
| 48 | #include "primitives/Molecule.hpp" | 
| 49 | #include "utils/simError.h" | 
| 50 |  | 
| 51 | #define PI 3.14159265359 | 
| 52 | #define TWO_PI 6.28318530718 | 
| 53 |  | 
| 54 | namespace oopse { | 
| 55 |  | 
| 56 | Restraints::Restraints(SimInfo* info, double lambdaVal, double lambdaExp){ | 
| 57 | info_ = info; | 
| 58 | Globals* simParam = info_->getSimParams(); | 
| 59 |  | 
| 60 | lambdaValue = lambdaVal; | 
| 61 | lambdaK = lambdaExp; | 
| 62 |  | 
| 63 | if (simParam->getUseSolidThermInt()) { | 
| 64 | if (simParam->haveDistSpringConst()) { | 
| 65 | kDist = simParam->getDistSpringConst(); | 
| 66 | } | 
| 67 | else{ | 
| 68 | kDist = 6.0; | 
| 69 | sprintf(painCave.errMsg, | 
| 70 | "ThermoIntegration Warning: the spring constant for the\n" | 
| 71 | "\ttranslational restraint was not specified. OOPSE will use\n" | 
| 72 | "\ta default value of %f. To set it to something else, use\n" | 
| 73 | "\tthe thermIntDistSpringConst variable.\n", | 
| 74 | kDist); | 
| 75 | painCave.isFatal = 0; | 
| 76 | simError(); | 
| 77 | } | 
| 78 | if (simParam->haveThetaSpringConst()) { | 
| 79 | kTheta = simParam->getThetaSpringConst(); | 
| 80 | } | 
| 81 | else{ | 
| 82 | kTheta = 7.5; | 
| 83 | sprintf(painCave.errMsg, | 
| 84 | "ThermoIntegration Warning: the spring constant for the\n" | 
| 85 | "\tdeflection orientational restraint was not specified.\n" | 
| 86 | "\tOOPSE will use a default value of %f. To set it to\n" | 
| 87 | "\tsomething else, use the thermIntThetaSpringConst variable.\n", | 
| 88 | kTheta); | 
| 89 | painCave.isFatal = 0; | 
| 90 | simError(); | 
| 91 | } | 
| 92 | if (simParam->haveOmegaSpringConst()) { | 
| 93 | kOmega = simParam->getOmegaSpringConst(); | 
| 94 | } | 
| 95 | else{ | 
| 96 | kOmega = 13.5; | 
| 97 | sprintf(painCave.errMsg, | 
| 98 | "ThermoIntegration Warning: the spring constant for the\n" | 
| 99 | "\tspin orientational restraint was not specified. OOPSE\n" | 
| 100 | "\twill use a default value of %f. To set it to something\n" | 
| 101 | "\telse, use the thermIntOmegaSpringConst variable.\n", | 
| 102 | kOmega); | 
| 103 | painCave.isFatal = 0; | 
| 104 | simError(); | 
| 105 | } | 
| 106 | } | 
| 107 |  | 
| 108 | // build a RestReader and read in important information | 
| 109 | restRead_ = new RestReader(info_); | 
| 110 | restRead_->readIdealCrystal(); | 
| 111 | restRead_->readZangle(); | 
| 112 |  | 
| 113 | delete restRead_; | 
| 114 | restRead_ = NULL; | 
| 115 |  | 
| 116 | } | 
| 117 |  | 
| 118 | Restraints::~Restraints(){ | 
| 119 | } | 
| 120 |  | 
| 121 | void Restraints::Calc_rVal(Vector3d &position, double refPosition[3]){ | 
| 122 | delRx = position.x() - refPosition[0]; | 
| 123 | delRy = position.y() - refPosition[1]; | 
| 124 | delRz = position.z() - refPosition[2]; | 
| 125 |  | 
| 126 | return; | 
| 127 | } | 
| 128 |  | 
| 129 | void Restraints::Calc_body_thetaVal(RotMat3x3d &matrix, double refUnit[3]){ | 
| 130 | ub0x = matrix(0,0)*refUnit[0] + matrix(0,1)*refUnit[1] | 
| 131 | + matrix(0,2)*refUnit[2]; | 
| 132 | ub0y = matrix(1,0)*refUnit[0] + matrix(1,1)*refUnit[1] | 
| 133 | + matrix(1,2)*refUnit[2]; | 
| 134 | ub0z = matrix(2,0)*refUnit[0] + matrix(2,1)*refUnit[1] | 
| 135 | + matrix(2,2)*refUnit[2]; | 
| 136 |  | 
| 137 | normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); | 
| 138 | ub0x = ub0x/normalize; | 
| 139 | ub0y = ub0y/normalize; | 
| 140 | ub0z = ub0z/normalize; | 
| 141 |  | 
| 142 | // Theta is the dot product of the reference and new z-axes | 
| 143 | theta = acos(ub0z); | 
| 144 |  | 
| 145 | return; | 
| 146 | } | 
| 147 |  | 
| 148 | void Restraints::Calc_body_omegaVal(double zAngle){ | 
| 149 | double zRotator[3][3]; | 
| 150 | double tempOmega; | 
| 151 | double wholeTwoPis; | 
| 152 | // Use the omega accumulated from the rotation propagation | 
| 153 | omega = zAngle; | 
| 154 |  | 
| 155 | // translate the omega into a range between -PI and PI | 
| 156 | if (omega < -PI){ | 
| 157 | tempOmega = omega / -TWO_PI; | 
| 158 | wholeTwoPis = floor(tempOmega); | 
| 159 | tempOmega = omega + TWO_PI*wholeTwoPis; | 
| 160 | if (tempOmega < -PI) | 
| 161 | omega = tempOmega + TWO_PI; | 
| 162 | else | 
| 163 | omega = tempOmega; | 
| 164 | } | 
| 165 | if (omega > PI){ | 
| 166 | tempOmega = omega / TWO_PI; | 
| 167 | wholeTwoPis = floor(tempOmega); | 
| 168 | tempOmega = omega - TWO_PI*wholeTwoPis; | 
| 169 | if (tempOmega > PI) | 
| 170 | omega = tempOmega - TWO_PI; | 
| 171 | else | 
| 172 | omega = tempOmega; | 
| 173 | } | 
| 174 |  | 
| 175 | vb0x = sin(omega); | 
| 176 | vb0y = cos(omega); | 
| 177 | vb0z = 0.0; | 
| 178 |  | 
| 179 | normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); | 
| 180 | vb0x = vb0x/normalize; | 
| 181 | vb0y = vb0y/normalize; | 
| 182 | vb0z = vb0z/normalize; | 
| 183 |  | 
| 184 | return; | 
| 185 | } | 
| 186 |  | 
| 187 | double Restraints::Calc_Restraint_Forces(){ | 
| 188 | SimInfo::MoleculeIterator mi; | 
| 189 | Molecule* mol; | 
| 190 | Molecule::IntegrableObjectIterator ii; | 
| 191 | StuntDouble* integrableObject; | 
| 192 | Vector3d pos; | 
| 193 | RotMat3x3d A; | 
| 194 | double refPos[3]; | 
| 195 | double refVec[3]; | 
| 196 | double tolerance; | 
| 197 | double tempPotent; | 
| 198 | double factor; | 
| 199 | double spaceTrq[3]; | 
| 200 | double omegaPass; | 
| 201 | GenericData* data; | 
| 202 | DoubleGenericData* doubleData; | 
| 203 |  | 
| 204 | tolerance = 5.72957795131e-7; | 
| 205 |  | 
| 206 | harmPotent = 0.0;  // zero out the global harmonic potential variable | 
| 207 |  | 
| 208 | factor = 1 - pow(lambdaValue, lambdaK); | 
| 209 |  | 
| 210 | for (mol = info_->beginMolecule(mi); mol != NULL; | 
| 211 | mol = info_->nextMolecule(mi)) { | 
| 212 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 213 | integrableObject != NULL; | 
| 214 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 215 |  | 
| 216 | // obtain the current and reference positions | 
| 217 | pos = integrableObject->getPos(); | 
| 218 |  | 
| 219 | data = integrableObject->getPropertyByName("refPosX"); | 
| 220 | if (data){ | 
| 221 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 222 | if (!doubleData){ | 
| 223 | cerr << "Can't obtain refPosX from StuntDouble\n"; | 
| 224 | return 0.0; | 
| 225 | } | 
| 226 | else refPos[0] = doubleData->getData(); | 
| 227 | } | 
| 228 | data = integrableObject->getPropertyByName("refPosY"); | 
| 229 | if (data){ | 
| 230 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 231 | if (!doubleData){ | 
| 232 | cerr << "Can't obtain refPosY from StuntDouble\n"; | 
| 233 | return 0.0; | 
| 234 | } | 
| 235 | else refPos[1] = doubleData->getData(); | 
| 236 | } | 
| 237 | data = integrableObject->getPropertyByName("refPosZ"); | 
| 238 | if (data){ | 
| 239 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 240 | if (!doubleData){ | 
| 241 | cerr << "Can't obtain refPosZ from StuntDouble\n"; | 
| 242 | return 0.0; | 
| 243 | } | 
| 244 | else refPos[2] = doubleData->getData(); | 
| 245 | } | 
| 246 |  | 
| 247 | // calculate the displacement | 
| 248 | Calc_rVal( pos, refPos ); | 
| 249 |  | 
| 250 | // calculate the derivatives | 
| 251 | dVdrx = -kDist*delRx; | 
| 252 | dVdry = -kDist*delRy; | 
| 253 | dVdrz = -kDist*delRz; | 
| 254 |  | 
| 255 | // next we calculate the restraint forces | 
| 256 | restraintFrc[0] = dVdrx; | 
| 257 | restraintFrc[1] = dVdry; | 
| 258 | restraintFrc[2] = dVdrz; | 
| 259 | tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); | 
| 260 |  | 
| 261 | // apply the lambda scaling factor to the forces | 
| 262 | for (j = 0; j < 3; j++) restraintFrc[j] *= factor; | 
| 263 |  | 
| 264 | // and add the temporary force to the total force | 
| 265 | integrableObject->addFrc(restraintFrc); | 
| 266 |  | 
| 267 | // if the particle is directional, we accumulate the rot. restraints | 
| 268 | if (integrableObject->isDirectional()){ | 
| 269 |  | 
| 270 | // get the current rotation matrix and reference vector | 
| 271 | A = integrableObject->getA(); | 
| 272 |  | 
| 273 | data = integrableObject->getPropertyByName("refVectorX"); | 
| 274 | if (data){ | 
| 275 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 276 | if (!doubleData){ | 
| 277 | cerr << "Can't obtain refVectorX from StuntDouble\n"; | 
| 278 | return 0.0; | 
| 279 | } | 
| 280 | else refVec[0] = doubleData->getData(); | 
| 281 | } | 
| 282 | data = integrableObject->getPropertyByName("refVectorY"); | 
| 283 | if (data){ | 
| 284 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 285 | if (!doubleData){ | 
| 286 | cerr << "Can't obtain refVectorY from StuntDouble\n"; | 
| 287 | return 0.0; | 
| 288 | } | 
| 289 | else refVec[1] = doubleData->getData(); | 
| 290 | } | 
| 291 | data = integrableObject->getPropertyByName("refVectorZ"); | 
| 292 | if (data){ | 
| 293 | doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 294 | if (!doubleData){ | 
| 295 | cerr << "Can't obtain refVectorZ from StuntDouble\n"; | 
| 296 | return 0.0; | 
| 297 | } | 
| 298 | else refVec[2] = doubleData->getData(); | 
| 299 | } | 
| 300 |  | 
| 301 | // calculate the theta and omega displacements | 
| 302 | Calc_body_thetaVal( A, refVec ); | 
| 303 | omegaPass = integrableObject->getZangle(); | 
| 304 | Calc_body_omegaVal( omegaPass ); | 
| 305 |  | 
| 306 | // uTx... and vTx... are the body-fixed z and y unit vectors | 
| 307 | uTx = 0.0; | 
| 308 | uTy = 0.0; | 
| 309 | uTz = 1.0; | 
| 310 | vTx = 0.0; | 
| 311 | vTy = 1.0; | 
| 312 | vTz = 0.0; | 
| 313 |  | 
| 314 | dVdux = 0.0; | 
| 315 | dVduy = 0.0; | 
| 316 | dVduz = 0.0; | 
| 317 | dVdvx = 0.0; | 
| 318 | dVdvy = 0.0; | 
| 319 | dVdvz = 0.0; | 
| 320 |  | 
| 321 | if (fabs(theta) > tolerance) { | 
| 322 | dVdux = -(kTheta*theta/sin(theta))*ub0x; | 
| 323 | dVduy = -(kTheta*theta/sin(theta))*ub0y; | 
| 324 | dVduz = -(kTheta*theta/sin(theta))*ub0z; | 
| 325 | } | 
| 326 |  | 
| 327 | if (fabs(omega) > tolerance) { | 
| 328 | dVdvx = -(kOmega*omega/sin(omega))*vb0x; | 
| 329 | dVdvy = -(kOmega*omega/sin(omega))*vb0y; | 
| 330 | dVdvz = -(kOmega*omega/sin(omega))*vb0z; | 
| 331 | } | 
| 332 |  | 
| 333 | // next we calculate the restraint torques | 
| 334 | restraintTrq[0] = 0.0; | 
| 335 | restraintTrq[1] = 0.0; | 
| 336 | restraintTrq[2] = 0.0; | 
| 337 |  | 
| 338 | if (fabs(omega) > tolerance) { | 
| 339 | restraintTrq[0] += 0.0; | 
| 340 | restraintTrq[1] += 0.0; | 
| 341 | restraintTrq[2] += vTy*dVdvx; | 
| 342 | tempPotent += 0.5*(kOmega*omega*omega); | 
| 343 | } | 
| 344 | if (fabs(theta) > tolerance) { | 
| 345 | restraintTrq[0] += (uTz*dVduy); | 
| 346 | restraintTrq[1] += -(uTz*dVdux); | 
| 347 | restraintTrq[2] += 0.0; | 
| 348 | tempPotent += 0.5*(kTheta*theta*theta); | 
| 349 | } | 
| 350 |  | 
| 351 | // apply the lambda scaling factor to these torques | 
| 352 | for (j = 0; j < 3; j++) restraintTrq[j] *= factor; | 
| 353 |  | 
| 354 | // now we need to convert from body-fixed to space-fixed torques | 
| 355 | spaceTrq[0] = A(0,0)*restraintTrq[0] + A(1,0)*restraintTrq[1] | 
| 356 | + A(2,0)*restraintTrq[2]; | 
| 357 | spaceTrq[1] = A(0,1)*restraintTrq[0] + A(1,1)*restraintTrq[1] | 
| 358 | + A(2,1)*restraintTrq[2]; | 
| 359 | spaceTrq[2] = A(0,2)*restraintTrq[0] + A(1,2)*restraintTrq[1] | 
| 360 | + A(2,2)*restraintTrq[2]; | 
| 361 |  | 
| 362 | // now pass this temporary torque vector to the total torque | 
| 363 | integrableObject->addTrq(spaceTrq); | 
| 364 | } | 
| 365 |  | 
| 366 | // update the total harmonic potential with this object's contribution | 
| 367 | harmPotent += tempPotent; | 
| 368 | } | 
| 369 |  | 
| 370 | } | 
| 371 |  | 
| 372 | // we can finish by returning the appropriately scaled potential energy | 
| 373 | tempPotent = harmPotent * factor; | 
| 374 |  | 
| 375 | return tempPotent; | 
| 376 |  | 
| 377 | } | 
| 378 |  | 
| 379 | }// end namespace oopse |