| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 42 | 
– | 
#include <cmath> | 
| 43 | 
– | 
#include "restraints/ThermoIntegrationForceManager.hpp" | 
| 44 | 
– | 
#include "integrators/Integrator.hpp" | 
| 45 | 
– | 
#include "math/SquareMatrix3.hpp" | 
| 46 | 
– | 
#include "primitives/Molecule.hpp" | 
| 47 | 
– | 
#include "utils/simError.h" | 
| 48 | 
– | 
#include "utils/OOPSEConstant.hpp" | 
| 49 | 
– | 
#include "utils/StringUtils.hpp" | 
| 50 | 
– | 
 | 
| 43 | 
  | 
#ifdef IS_MPI | 
| 44 | 
  | 
#include <mpi.h> | 
| 45 | 
< | 
#define TAKE_THIS_TAG_REAL 2 | 
| 54 | 
< | 
#endif //is_mpi | 
| 45 | 
> | 
#endif | 
| 46 | 
  | 
 | 
| 47 | 
< | 
namespace oopse { | 
| 47 | 
> | 
#include "restraints/ThermoIntegrationForceManager.hpp" | 
| 48 | 
> | 
 | 
| 49 | 
> | 
namespace OpenMD { | 
| 50 | 
  | 
   | 
| 51 | 
  | 
  ThermoIntegrationForceManager::ThermoIntegrationForceManager(SimInfo* info):  | 
| 52 | 
< | 
    ForceManager(info){ | 
| 53 | 
< | 
      currSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 54 | 
< | 
      simParam = info_->getSimParams(); | 
| 52 | 
> | 
    RestraintForceManager(info){ | 
| 53 | 
> | 
    currSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 54 | 
> | 
    simParam = info_->getSimParams(); | 
| 55 | 
  | 
     | 
| 56 | 
< | 
      if (simParam->haveThermodynamicIntegrationLambda()){ | 
| 57 | 
< | 
        tIntLambda_ = simParam->getThermodynamicIntegrationLambda(); | 
| 58 | 
< | 
      } | 
| 59 | 
< | 
      else{ | 
| 60 | 
< | 
        tIntLambda_ = 1.0; | 
| 61 | 
< | 
        sprintf(painCave.errMsg, | 
| 62 | 
< | 
                "ThermoIntegration error: the transformation parameter\n" | 
| 63 | 
< | 
                "\t(lambda) was not specified. OOPSE will use a default\n" | 
| 64 | 
< | 
                "\tvalue of %f. To set lambda, use the \n" | 
| 65 | 
< | 
                "\tthermodynamicIntegrationLambda variable.\n", | 
| 66 | 
< | 
                tIntLambda_); | 
| 67 | 
< | 
        painCave.isFatal = 0; | 
| 68 | 
< | 
        simError(); | 
| 69 | 
< | 
      } | 
| 56 | 
> | 
    if (simParam->haveThermodynamicIntegrationLambda()){ | 
| 57 | 
> | 
      tIntLambda_ = simParam->getThermodynamicIntegrationLambda(); | 
| 58 | 
> | 
    } | 
| 59 | 
> | 
    else{ | 
| 60 | 
> | 
      tIntLambda_ = 1.0; | 
| 61 | 
> | 
      sprintf(painCave.errMsg, | 
| 62 | 
> | 
              "ThermoIntegration error: the transformation parameter\n" | 
| 63 | 
> | 
              "\t(lambda) was not specified. OpenMD will use a default\n" | 
| 64 | 
> | 
              "\tvalue of %f. To set lambda, use the \n" | 
| 65 | 
> | 
              "\tthermodynamicIntegrationLambda variable.\n", | 
| 66 | 
> | 
              tIntLambda_); | 
| 67 | 
> | 
      painCave.isFatal = 0; | 
| 68 | 
> | 
      simError(); | 
| 69 | 
> | 
    } | 
| 70 | 
  | 
     | 
| 71 | 
< | 
      if (simParam->haveThermodynamicIntegrationK()){ | 
| 72 | 
< | 
        tIntK_ = simParam->getThermodynamicIntegrationK(); | 
| 80 | 
< | 
      } | 
| 81 | 
< | 
      else{ | 
| 82 | 
< | 
        tIntK_ = 1.0; | 
| 83 | 
< | 
        sprintf(painCave.errMsg, | 
| 84 | 
< | 
                "ThermoIntegration Warning: the tranformation parameter\n" | 
| 85 | 
< | 
                "\texponent (k) was not specified. OOPSE will use a default\n" | 
| 86 | 
< | 
                "\tvalue of %f. To set k, use the thermodynamicIntegrationK\n" | 
| 87 | 
< | 
                "\tvariable.\n", | 
| 88 | 
< | 
                tIntK_); | 
| 89 | 
< | 
        painCave.isFatal = 0; | 
| 90 | 
< | 
        simError();       | 
| 91 | 
< | 
      } | 
| 92 | 
< | 
     | 
| 93 | 
< | 
      if (simParam->getUseSolidThermInt()) { | 
| 94 | 
< | 
        // build a restraint object | 
| 95 | 
< | 
        restraint_ =  new Restraints(info_, tIntLambda_, tIntK_); | 
| 96 | 
< | 
       | 
| 97 | 
< | 
      } | 
| 98 | 
< | 
     | 
| 99 | 
< | 
      // build the scaling factor used to modulate the forces and torques | 
| 100 | 
< | 
      factor_ = pow(tIntLambda_, tIntK_); | 
| 101 | 
< | 
 | 
| 71 | 
> | 
    if (simParam->haveThermodynamicIntegrationK()){ | 
| 72 | 
> | 
      tIntK_ = simParam->getThermodynamicIntegrationK(); | 
| 73 | 
  | 
    } | 
| 74 | 
+ | 
    else{ | 
| 75 | 
+ | 
      tIntK_ = 1.0; | 
| 76 | 
+ | 
      sprintf(painCave.errMsg, | 
| 77 | 
+ | 
              "ThermoIntegration Warning: the tranformation parameter\n" | 
| 78 | 
+ | 
              "\texponent (k) was not specified. OpenMD will use a default\n" | 
| 79 | 
+ | 
              "\tvalue of %f. To set k, use the thermodynamicIntegrationK\n" | 
| 80 | 
+ | 
              "\tvariable.\n", | 
| 81 | 
+ | 
              tIntK_); | 
| 82 | 
+ | 
      painCave.isFatal = 0; | 
| 83 | 
+ | 
      simError();       | 
| 84 | 
+ | 
    } | 
| 85 | 
+ | 
     | 
| 86 | 
+ | 
    // build the scaling factor used to modulate the forces and torques | 
| 87 | 
+ | 
    factor_ = pow(tIntLambda_, tIntK_); | 
| 88 | 
+ | 
  } | 
| 89 | 
  | 
   | 
| 90 | 
  | 
  ThermoIntegrationForceManager::~ThermoIntegrationForceManager(){ | 
| 91 | 
  | 
  } | 
| 92 | 
  | 
   | 
| 93 | 
< | 
  void ThermoIntegrationForceManager::calcForces(bool needPotential,  | 
| 108 | 
< | 
                                                 bool needStress){ | 
| 93 | 
> | 
  void ThermoIntegrationForceManager::calcForces(){ | 
| 94 | 
  | 
    Snapshot* curSnapshot; | 
| 95 | 
  | 
    SimInfo::MoleculeIterator mi; | 
| 96 | 
  | 
    Molecule* mol; | 
| 97 | 
  | 
    Molecule::IntegrableObjectIterator ii; | 
| 98 | 
< | 
    StuntDouble* integrableObject; | 
| 98 | 
> | 
    StuntDouble* sd; | 
| 99 | 
  | 
    Vector3d frc; | 
| 100 | 
  | 
    Vector3d trq; | 
| 101 | 
  | 
    Mat3x3d tempTau; | 
| 102 | 
  | 
     | 
| 103 | 
  | 
    // perform the standard calcForces first | 
| 104 | 
< | 
    ForceManager::calcForces(needPotential, needStress); | 
| 104 | 
> | 
    ForceManager::calcForces(); | 
| 105 | 
  | 
     | 
| 106 | 
  | 
    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 107 | 
  | 
 | 
| 108 | 
< | 
    // now scale forces and torques of all the integrableObjects | 
| 108 | 
> | 
    // now scale forces and torques of all the sds | 
| 109 | 
  | 
       | 
| 110 | 
  | 
    for (mol = info_->beginMolecule(mi); mol != NULL;  | 
| 111 | 
  | 
         mol = info_->nextMolecule(mi)) { | 
| 112 | 
< | 
      for (integrableObject = mol->beginIntegrableObject(ii);  | 
| 113 | 
< | 
           integrableObject != NULL;  | 
| 114 | 
< | 
           integrableObject = mol->nextIntegrableObject(ii)) { | 
| 115 | 
< | 
        frc = integrableObject->getFrc(); | 
| 112 | 
> | 
 | 
| 113 | 
> | 
      for (sd = mol->beginIntegrableObject(ii); sd != NULL;  | 
| 114 | 
> | 
           sd = mol->nextIntegrableObject(ii)) { | 
| 115 | 
> | 
 | 
| 116 | 
> | 
        frc = sd->getFrc(); | 
| 117 | 
  | 
        frc *= factor_; | 
| 118 | 
< | 
        integrableObject->setFrc(frc); | 
| 118 | 
> | 
        sd->setFrc(frc); | 
| 119 | 
  | 
         | 
| 120 | 
< | 
        if (integrableObject->isDirectional()){ | 
| 121 | 
< | 
          trq = integrableObject->getTrq(); | 
| 120 | 
> | 
        if (sd->isDirectional()){ | 
| 121 | 
> | 
          trq = sd->getTrq(); | 
| 122 | 
  | 
          trq *= factor_; | 
| 123 | 
< | 
          integrableObject->setTrq(trq); | 
| 123 | 
> | 
          sd->setTrq(trq); | 
| 124 | 
  | 
        } | 
| 125 | 
  | 
      } | 
| 126 | 
  | 
    } | 
| 141 | 
– | 
   | 
| 142 | 
– | 
    // set vraw to be the unmodulated potential | 
| 143 | 
– | 
    lrPot_ = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 144 | 
– | 
    curSnapshot->statData[Stats::VRAW] = lrPot_; | 
| 127 | 
  | 
     | 
| 128 | 
+ | 
    // set rawPotential to be the unmodulated potential | 
| 129 | 
+ | 
    lrPot_ = curSnapshot->getLongRangePotential(); | 
| 130 | 
+ | 
    curSnapshot->setRawPotential(lrPot_); | 
| 131 | 
+ | 
     | 
| 132 | 
  | 
    // modulate the potential and update the snapshot | 
| 133 | 
  | 
    lrPot_ *= factor_; | 
| 134 | 
< | 
    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; | 
| 134 | 
> | 
    curSnapshot->setLongRangePotential(lrPot_); | 
| 135 | 
  | 
     | 
| 136 | 
  | 
    // scale the pressure tensor | 
| 137 | 
< | 
    tempTau = curSnapshot->statData.getTau(); | 
| 137 | 
> | 
    tempTau = curSnapshot->getStressTensor(); | 
| 138 | 
  | 
    tempTau *= factor_; | 
| 139 | 
< | 
    curSnapshot->statData.setTau(tempTau); | 
| 140 | 
< | 
#ifndef IS_MPI | 
| 141 | 
< | 
    // do the single processor crystal restraint forces for  | 
| 142 | 
< | 
    // thermodynamic integration | 
| 143 | 
< | 
    if (simParam->getUseSolidThermInt()) { | 
| 144 | 
< | 
       | 
| 145 | 
< | 
      lrPot_ += restraint_->Calc_Restraint_Forces(); | 
| 146 | 
< | 
      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; | 
| 147 | 
< | 
       | 
| 148 | 
< | 
      vHarm_ = restraint_->getVharm(); | 
| 163 | 
< | 
      curSnapshot->statData[Stats::VHARM] = vHarm_; | 
| 139 | 
> | 
    curSnapshot->setStressTensor(tempTau); | 
| 140 | 
> | 
 | 
| 141 | 
> | 
    // now, on to the applied restraining potentials (if needed): | 
| 142 | 
> | 
    RealType restPot_local = 0.0; | 
| 143 | 
> | 
    RealType vHarm_local = 0.0; | 
| 144 | 
> | 
     | 
| 145 | 
> | 
    if (simParam->getUseRestraints()) { | 
| 146 | 
> | 
      // do restraints from RestraintForceManager: | 
| 147 | 
> | 
      restPot_local = doRestraints(1.0 - factor_);       | 
| 148 | 
> | 
      vHarm_local = getUnscaledPotential(); | 
| 149 | 
  | 
    } | 
| 150 | 
+ | 
       | 
| 151 | 
+ | 
#ifdef IS_MPI | 
| 152 | 
+ | 
    RealType restPot; | 
| 153 | 
+ | 
    MPI::COMM_WORLD.Allreduce(&restPot_local, &restPot, 1,  | 
| 154 | 
+ | 
                              MPI::REALTYPE, MPI::SUM); | 
| 155 | 
+ | 
    MPI::COMM_WORLD.Allreduce(&vHarm_local, &vHarm_, 1,  | 
| 156 | 
+ | 
                              MPI::REALTYPE, MPI::SUM);          | 
| 157 | 
+ | 
    lrPot_ += restPot; | 
| 158 | 
  | 
#else | 
| 159 | 
< | 
    double tempLRPot = 0.0; | 
| 160 | 
< | 
    double tempVHarm = 0.0; | 
| 161 | 
< | 
    MPI_Status ierr; | 
| 169 | 
< | 
    int nproc; | 
| 170 | 
< | 
    MPI_Comm_size(MPI_COMM_WORLD, &nproc); | 
| 159 | 
> | 
    lrPot_ += restPot_local; | 
| 160 | 
> | 
    vHarm_ = vHarm_local; | 
| 161 | 
> | 
#endif | 
| 162 | 
  | 
 | 
| 163 | 
< | 
    // do the MPI crystal restraint forces for each processor | 
| 164 | 
< | 
    if (simParam->getUseSolidThermInt()) { | 
| 165 | 
< | 
      tempLRPot = restraint_->Calc_Restraint_Forces(); | 
| 166 | 
< | 
      tempVHarm = restraint_->getVharm(); | 
| 176 | 
< | 
    } | 
| 177 | 
< | 
 | 
| 178 | 
< | 
    // master receives and accumulates the restraint info | 
| 179 | 
< | 
    if (worldRank == 0) { | 
| 180 | 
< | 
      for(int i = 0 ; i < nproc; ++i) { | 
| 181 | 
< | 
        if (i == worldRank) { | 
| 182 | 
< | 
          lrPot_ += tempLRPot; | 
| 183 | 
< | 
          vHarm_ += tempVHarm; | 
| 184 | 
< | 
        } else { | 
| 185 | 
< | 
          MPI_Recv(&tempLRPot, 1, MPI_REALTYPE, i,  | 
| 186 | 
< | 
                   TAKE_THIS_TAG_REAL, MPI_COMM_WORLD, &ierr); | 
| 187 | 
< | 
          MPI_Recv(&tempVHarm, 1, MPI_REALTYPE, i,  | 
| 188 | 
< | 
                   TAKE_THIS_TAG_REAL, MPI_COMM_WORLD, &ierr); | 
| 189 | 
< | 
          lrPot_ += tempLRPot; | 
| 190 | 
< | 
          vHarm_ += tempVHarm; | 
| 191 | 
< | 
        } | 
| 192 | 
< | 
      } | 
| 193 | 
< | 
 | 
| 194 | 
< | 
      // give the final values to stats | 
| 195 | 
< | 
      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; | 
| 196 | 
< | 
      curSnapshot->statData[Stats::VHARM] = vHarm_; | 
| 197 | 
< | 
 | 
| 198 | 
< | 
    } else { | 
| 199 | 
< | 
      // pack up and send the appropriate info to the master node | 
| 200 | 
< | 
      for(int j = 1; j < nproc; ++j) { | 
| 201 | 
< | 
        if (worldRank == j) { | 
| 202 | 
< | 
 | 
| 203 | 
< | 
          MPI_Send(&tempLRPot, 1, MPI_REALTYPE, 0,  | 
| 204 | 
< | 
                   TAKE_THIS_TAG_REAL, MPI_COMM_WORLD); | 
| 205 | 
< | 
          MPI_Send(&tempVHarm, 1, MPI_REALTYPE, 0,  | 
| 206 | 
< | 
                   TAKE_THIS_TAG_REAL, MPI_COMM_WORLD); | 
| 207 | 
< | 
        } | 
| 208 | 
< | 
      } | 
| 209 | 
< | 
    } | 
| 210 | 
< | 
#endif //is_mpi | 
| 211 | 
< | 
  } | 
| 212 | 
< | 
   | 
| 163 | 
> | 
    // give the final values to stats | 
| 164 | 
> | 
    curSnapshot->setLongRangePotential(lrPot_); | 
| 165 | 
> | 
    curSnapshot->setRestraintPotential(vHarm_); | 
| 166 | 
> | 
  }   | 
| 167 | 
  | 
} |