| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 | #ifdef IS_MPI | 
| 42 | #include <mpi.h> | 
| 43 | #endif | 
| 44 |  | 
| 45 | #include <cmath> | 
| 46 | #include <sstream> | 
| 47 | #include <string> | 
| 48 |  | 
| 49 | #include "rnemd/RNEMD.hpp" | 
| 50 | #include "math/Vector3.hpp" | 
| 51 | #include "math/Vector.hpp" | 
| 52 | #include "math/SquareMatrix3.hpp" | 
| 53 | #include "math/Polynomial.hpp" | 
| 54 | #include "primitives/Molecule.hpp" | 
| 55 | #include "primitives/StuntDouble.hpp" | 
| 56 | #include "utils/PhysicalConstants.hpp" | 
| 57 | #include "utils/Tuple.hpp" | 
| 58 | #include "brains/Thermo.hpp" | 
| 59 | #include "math/ConvexHull.hpp" | 
| 60 |  | 
| 61 | #ifdef _MSC_VER | 
| 62 | #define isnan(x) _isnan((x)) | 
| 63 | #define isinf(x) (!_finite(x) && !_isnan(x)) | 
| 64 | #endif | 
| 65 |  | 
| 66 | #define HONKING_LARGE_VALUE 1.0e10 | 
| 67 |  | 
| 68 | using namespace std; | 
| 69 | namespace OpenMD { | 
| 70 |  | 
| 71 | RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), | 
| 72 | evaluatorA_(info), seleManA_(info), | 
| 73 | commonA_(info), evaluatorB_(info), | 
| 74 | seleManB_(info), commonB_(info), | 
| 75 | hasData_(false), hasDividingArea_(false), | 
| 76 | usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { | 
| 77 |  | 
| 78 | trialCount_ = 0; | 
| 79 | failTrialCount_ = 0; | 
| 80 | failRootCount_ = 0; | 
| 81 |  | 
| 82 | Globals* simParams = info->getSimParams(); | 
| 83 | RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); | 
| 84 |  | 
| 85 | doRNEMD_ = rnemdParams->getUseRNEMD(); | 
| 86 | if (!doRNEMD_) return; | 
| 87 |  | 
| 88 | stringToMethod_["Swap"]  = rnemdSwap; | 
| 89 | stringToMethod_["NIVS"]  = rnemdNIVS; | 
| 90 | stringToMethod_["VSS"]   = rnemdVSS; | 
| 91 |  | 
| 92 | stringToFluxType_["KE"]  = rnemdKE; | 
| 93 | stringToFluxType_["Px"]  = rnemdPx; | 
| 94 | stringToFluxType_["Py"]  = rnemdPy; | 
| 95 | stringToFluxType_["Pz"]  = rnemdPz; | 
| 96 | stringToFluxType_["Pvector"]  = rnemdPvector; | 
| 97 | stringToFluxType_["Lx"]  = rnemdLx; | 
| 98 | stringToFluxType_["Ly"]  = rnemdLy; | 
| 99 | stringToFluxType_["Lz"]  = rnemdLz; | 
| 100 | stringToFluxType_["Lvector"]  = rnemdLvector; | 
| 101 | stringToFluxType_["KE+Px"]  = rnemdKePx; | 
| 102 | stringToFluxType_["KE+Py"]  = rnemdKePy; | 
| 103 | stringToFluxType_["KE+Pvector"]  = rnemdKePvector; | 
| 104 | stringToFluxType_["KE+Lx"]  = rnemdKeLx; | 
| 105 | stringToFluxType_["KE+Ly"]  = rnemdKeLy; | 
| 106 | stringToFluxType_["KE+Lz"]  = rnemdKeLz; | 
| 107 | stringToFluxType_["KE+Lvector"]  = rnemdKeLvector; | 
| 108 |  | 
| 109 | runTime_ = simParams->getRunTime(); | 
| 110 | statusTime_ = simParams->getStatusTime(); | 
| 111 |  | 
| 112 | const string methStr = rnemdParams->getMethod(); | 
| 113 | bool hasFluxType = rnemdParams->haveFluxType(); | 
| 114 |  | 
| 115 | rnemdObjectSelection_ = rnemdParams->getObjectSelection(); | 
| 116 |  | 
| 117 | string fluxStr; | 
| 118 | if (hasFluxType) { | 
| 119 | fluxStr = rnemdParams->getFluxType(); | 
| 120 | } else { | 
| 121 | sprintf(painCave.errMsg, | 
| 122 | "RNEMD: No fluxType was set in the md file.  This parameter,\n" | 
| 123 | "\twhich must be one of the following values:\n" | 
| 124 | "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n" | 
| 125 | "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n" | 
| 126 | "\tmust be set to use RNEMD\n"); | 
| 127 | painCave.isFatal = 1; | 
| 128 | painCave.severity = OPENMD_ERROR; | 
| 129 | simError(); | 
| 130 | } | 
| 131 |  | 
| 132 | bool hasKineticFlux = rnemdParams->haveKineticFlux(); | 
| 133 | bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); | 
| 134 | bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); | 
| 135 | bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux(); | 
| 136 | bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); | 
| 137 | hasSelectionA_ = rnemdParams->haveSelectionA(); | 
| 138 | hasSelectionB_ = rnemdParams->haveSelectionB(); | 
| 139 | bool hasSlabWidth = rnemdParams->haveSlabWidth(); | 
| 140 | bool hasSlabACenter = rnemdParams->haveSlabACenter(); | 
| 141 | bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); | 
| 142 | bool hasSphereARadius = rnemdParams->haveSphereARadius(); | 
| 143 | hasSphereBRadius_ = rnemdParams->haveSphereBRadius(); | 
| 144 | bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin(); | 
| 145 | bool hasOutputFileName = rnemdParams->haveOutputFileName(); | 
| 146 | bool hasOutputFields = rnemdParams->haveOutputFields(); | 
| 147 |  | 
| 148 | map<string, RNEMDMethod>::iterator i; | 
| 149 | i = stringToMethod_.find(methStr); | 
| 150 | if (i != stringToMethod_.end()) | 
| 151 | rnemdMethod_ = i->second; | 
| 152 | else { | 
| 153 | sprintf(painCave.errMsg, | 
| 154 | "RNEMD: The current method,\n" | 
| 155 | "\t\t%s is not one of the recognized\n" | 
| 156 | "\texchange methods: Swap, NIVS, or VSS\n", | 
| 157 | methStr.c_str()); | 
| 158 | painCave.isFatal = 1; | 
| 159 | painCave.severity = OPENMD_ERROR; | 
| 160 | simError(); | 
| 161 | } | 
| 162 |  | 
| 163 | map<string, RNEMDFluxType>::iterator j; | 
| 164 | j = stringToFluxType_.find(fluxStr); | 
| 165 | if (j != stringToFluxType_.end()) | 
| 166 | rnemdFluxType_ = j->second; | 
| 167 | else { | 
| 168 | sprintf(painCave.errMsg, | 
| 169 | "RNEMD: The current fluxType,\n" | 
| 170 | "\t\t%s\n" | 
| 171 | "\tis not one of the recognized flux types.\n", | 
| 172 | fluxStr.c_str()); | 
| 173 | painCave.isFatal = 1; | 
| 174 | painCave.severity = OPENMD_ERROR; | 
| 175 | simError(); | 
| 176 | } | 
| 177 |  | 
| 178 | bool methodFluxMismatch = false; | 
| 179 | bool hasCorrectFlux = false; | 
| 180 | switch(rnemdMethod_) { | 
| 181 | case rnemdSwap: | 
| 182 | switch (rnemdFluxType_) { | 
| 183 | case rnemdKE: | 
| 184 | hasCorrectFlux = hasKineticFlux; | 
| 185 | break; | 
| 186 | case rnemdPx: | 
| 187 | case rnemdPy: | 
| 188 | case rnemdPz: | 
| 189 | hasCorrectFlux = hasMomentumFlux; | 
| 190 | break; | 
| 191 | default : | 
| 192 | methodFluxMismatch = true; | 
| 193 | break; | 
| 194 | } | 
| 195 | break; | 
| 196 | case rnemdNIVS: | 
| 197 | switch (rnemdFluxType_) { | 
| 198 | case rnemdKE: | 
| 199 | case rnemdRotKE: | 
| 200 | case rnemdFullKE: | 
| 201 | hasCorrectFlux = hasKineticFlux; | 
| 202 | break; | 
| 203 | case rnemdPx: | 
| 204 | case rnemdPy: | 
| 205 | case rnemdPz: | 
| 206 | hasCorrectFlux = hasMomentumFlux; | 
| 207 | break; | 
| 208 | case rnemdKePx: | 
| 209 | case rnemdKePy: | 
| 210 | hasCorrectFlux = hasMomentumFlux && hasKineticFlux; | 
| 211 | break; | 
| 212 | default: | 
| 213 | methodFluxMismatch = true; | 
| 214 | break; | 
| 215 | } | 
| 216 | break; | 
| 217 | case rnemdVSS: | 
| 218 | switch (rnemdFluxType_) { | 
| 219 | case rnemdKE: | 
| 220 | case rnemdRotKE: | 
| 221 | case rnemdFullKE: | 
| 222 | hasCorrectFlux = hasKineticFlux; | 
| 223 | break; | 
| 224 | case rnemdPx: | 
| 225 | case rnemdPy: | 
| 226 | case rnemdPz: | 
| 227 | hasCorrectFlux = hasMomentumFlux; | 
| 228 | break; | 
| 229 | case rnemdLx: | 
| 230 | case rnemdLy: | 
| 231 | case rnemdLz: | 
| 232 | hasCorrectFlux = hasAngularMomentumFlux; | 
| 233 | break; | 
| 234 | case rnemdPvector: | 
| 235 | hasCorrectFlux = hasMomentumFluxVector; | 
| 236 | break; | 
| 237 | case rnemdLvector: | 
| 238 | hasCorrectFlux = hasAngularMomentumFluxVector; | 
| 239 | break; | 
| 240 | case rnemdKePx: | 
| 241 | case rnemdKePy: | 
| 242 | hasCorrectFlux = hasMomentumFlux && hasKineticFlux; | 
| 243 | break; | 
| 244 | case rnemdKeLx: | 
| 245 | case rnemdKeLy: | 
| 246 | case rnemdKeLz: | 
| 247 | hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux; | 
| 248 | break; | 
| 249 | case rnemdKePvector: | 
| 250 | hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; | 
| 251 | break; | 
| 252 | case rnemdKeLvector: | 
| 253 | hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux; | 
| 254 | break; | 
| 255 | default: | 
| 256 | methodFluxMismatch = true; | 
| 257 | break; | 
| 258 | } | 
| 259 | default: | 
| 260 | break; | 
| 261 | } | 
| 262 |  | 
| 263 | if (methodFluxMismatch) { | 
| 264 | sprintf(painCave.errMsg, | 
| 265 | "RNEMD: The current method,\n" | 
| 266 | "\t\t%s\n" | 
| 267 | "\tcannot be used with the current flux type, %s\n", | 
| 268 | methStr.c_str(), fluxStr.c_str()); | 
| 269 | painCave.isFatal = 1; | 
| 270 | painCave.severity = OPENMD_ERROR; | 
| 271 | simError(); | 
| 272 | } | 
| 273 | if (!hasCorrectFlux) { | 
| 274 | sprintf(painCave.errMsg, | 
| 275 | "RNEMD: The current method, %s, and flux type, %s,\n" | 
| 276 | "\tdid not have the correct flux value specified. Options\n" | 
| 277 | "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n" | 
| 278 | "\tmomentumFluxVector, and angularMomentumFluxVector.\n", | 
| 279 | methStr.c_str(), fluxStr.c_str()); | 
| 280 | painCave.isFatal = 1; | 
| 281 | painCave.severity = OPENMD_ERROR; | 
| 282 | simError(); | 
| 283 | } | 
| 284 |  | 
| 285 | if (hasKineticFlux) { | 
| 286 | // convert the kcal / mol / Angstroms^2 / fs values in the md file | 
| 287 | // into  amu / fs^3: | 
| 288 | kineticFlux_ = rnemdParams->getKineticFlux() | 
| 289 | * PhysicalConstants::energyConvert; | 
| 290 | } else { | 
| 291 | kineticFlux_ = 0.0; | 
| 292 | } | 
| 293 | if (hasMomentumFluxVector) { | 
| 294 | momentumFluxVector_ = rnemdParams->getMomentumFluxVector(); | 
| 295 | } else { | 
| 296 | momentumFluxVector_ = V3Zero; | 
| 297 | if (hasMomentumFlux) { | 
| 298 | RealType momentumFlux = rnemdParams->getMomentumFlux(); | 
| 299 | switch (rnemdFluxType_) { | 
| 300 | case rnemdPx: | 
| 301 | momentumFluxVector_.x() = momentumFlux; | 
| 302 | break; | 
| 303 | case rnemdPy: | 
| 304 | momentumFluxVector_.y() = momentumFlux; | 
| 305 | break; | 
| 306 | case rnemdPz: | 
| 307 | momentumFluxVector_.z() = momentumFlux; | 
| 308 | break; | 
| 309 | case rnemdKePx: | 
| 310 | momentumFluxVector_.x() = momentumFlux; | 
| 311 | break; | 
| 312 | case rnemdKePy: | 
| 313 | momentumFluxVector_.y() = momentumFlux; | 
| 314 | break; | 
| 315 | default: | 
| 316 | break; | 
| 317 | } | 
| 318 | } | 
| 319 | if (hasAngularMomentumFluxVector) { | 
| 320 | angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector(); | 
| 321 | } else { | 
| 322 | angularMomentumFluxVector_ = V3Zero; | 
| 323 | if (hasAngularMomentumFlux) { | 
| 324 | RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux(); | 
| 325 | switch (rnemdFluxType_) { | 
| 326 | case rnemdLx: | 
| 327 | angularMomentumFluxVector_.x() = angularMomentumFlux; | 
| 328 | break; | 
| 329 | case rnemdLy: | 
| 330 | angularMomentumFluxVector_.y() = angularMomentumFlux; | 
| 331 | break; | 
| 332 | case rnemdLz: | 
| 333 | angularMomentumFluxVector_.z() = angularMomentumFlux; | 
| 334 | break; | 
| 335 | case rnemdKeLx: | 
| 336 | angularMomentumFluxVector_.x() = angularMomentumFlux; | 
| 337 | break; | 
| 338 | case rnemdKeLy: | 
| 339 | angularMomentumFluxVector_.y() = angularMomentumFlux; | 
| 340 | break; | 
| 341 | case rnemdKeLz: | 
| 342 | angularMomentumFluxVector_.z() = angularMomentumFlux; | 
| 343 | break; | 
| 344 | default: | 
| 345 | break; | 
| 346 | } | 
| 347 | } | 
| 348 | } | 
| 349 |  | 
| 350 | if (hasCoordinateOrigin) { | 
| 351 | coordinateOrigin_ = rnemdParams->getCoordinateOrigin(); | 
| 352 | } else { | 
| 353 | coordinateOrigin_ = V3Zero; | 
| 354 | } | 
| 355 |  | 
| 356 | // do some sanity checking | 
| 357 |  | 
| 358 | int selectionCount = seleMan_.getSelectionCount(); | 
| 359 |  | 
| 360 | int nIntegrable = info->getNGlobalIntegrableObjects(); | 
| 361 |  | 
| 362 | if (selectionCount > nIntegrable) { | 
| 363 | sprintf(painCave.errMsg, | 
| 364 | "RNEMD: The current objectSelection,\n" | 
| 365 | "\t\t%s\n" | 
| 366 | "\thas resulted in %d selected objects.  However,\n" | 
| 367 | "\tthe total number of integrable objects in the system\n" | 
| 368 | "\tis only %d.  This is almost certainly not what you want\n" | 
| 369 | "\tto do.  A likely cause of this is forgetting the _RB_0\n" | 
| 370 | "\tselector in the selection script!\n", | 
| 371 | rnemdObjectSelection_.c_str(), | 
| 372 | selectionCount, nIntegrable); | 
| 373 | painCave.isFatal = 0; | 
| 374 | painCave.severity = OPENMD_WARNING; | 
| 375 | simError(); | 
| 376 | } | 
| 377 |  | 
| 378 | areaAccumulator_ = new Accumulator(); | 
| 379 |  | 
| 380 | nBins_ = rnemdParams->getOutputBins(); | 
| 381 | binWidth_ = rnemdParams->getOutputBinWidth(); | 
| 382 |  | 
| 383 | data_.resize(RNEMD::ENDINDEX); | 
| 384 | OutputData z; | 
| 385 | z.units =  "Angstroms"; | 
| 386 | z.title =  "Z"; | 
| 387 | z.dataType = "RealType"; | 
| 388 | z.accumulator.reserve(nBins_); | 
| 389 | for (int i = 0; i < nBins_; i++) | 
| 390 | z.accumulator.push_back( new Accumulator() ); | 
| 391 | data_[Z] = z; | 
| 392 | outputMap_["Z"] =  Z; | 
| 393 |  | 
| 394 | OutputData r; | 
| 395 | r.units =  "Angstroms"; | 
| 396 | r.title =  "R"; | 
| 397 | r.dataType = "RealType"; | 
| 398 | r.accumulator.reserve(nBins_); | 
| 399 | for (int i = 0; i < nBins_; i++) | 
| 400 | r.accumulator.push_back( new Accumulator() ); | 
| 401 | data_[R] = r; | 
| 402 | outputMap_["R"] =  R; | 
| 403 |  | 
| 404 | OutputData temperature; | 
| 405 | temperature.units =  "K"; | 
| 406 | temperature.title =  "Temperature"; | 
| 407 | temperature.dataType = "RealType"; | 
| 408 | temperature.accumulator.reserve(nBins_); | 
| 409 | for (int i = 0; i < nBins_; i++) | 
| 410 | temperature.accumulator.push_back( new Accumulator() ); | 
| 411 | data_[TEMPERATURE] = temperature; | 
| 412 | outputMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 413 |  | 
| 414 | OutputData velocity; | 
| 415 | velocity.units = "angstroms/fs"; | 
| 416 | velocity.title =  "Velocity"; | 
| 417 | velocity.dataType = "Vector3d"; | 
| 418 | velocity.accumulator.reserve(nBins_); | 
| 419 | for (int i = 0; i < nBins_; i++) | 
| 420 | velocity.accumulator.push_back( new VectorAccumulator() ); | 
| 421 | data_[VELOCITY] = velocity; | 
| 422 | outputMap_["VELOCITY"] = VELOCITY; | 
| 423 |  | 
| 424 | OutputData angularVelocity; | 
| 425 | angularVelocity.units = "angstroms^2/fs"; | 
| 426 | angularVelocity.title =  "AngularVelocity"; | 
| 427 | angularVelocity.dataType = "Vector3d"; | 
| 428 | angularVelocity.accumulator.reserve(nBins_); | 
| 429 | for (int i = 0; i < nBins_; i++) | 
| 430 | angularVelocity.accumulator.push_back( new VectorAccumulator() ); | 
| 431 | data_[ANGULARVELOCITY] = angularVelocity; | 
| 432 | outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY; | 
| 433 |  | 
| 434 | OutputData density; | 
| 435 | density.units =  "g cm^-3"; | 
| 436 | density.title =  "Density"; | 
| 437 | density.dataType = "RealType"; | 
| 438 | density.accumulator.reserve(nBins_); | 
| 439 | for (int i = 0; i < nBins_; i++) | 
| 440 | density.accumulator.push_back( new Accumulator() ); | 
| 441 | data_[DENSITY] = density; | 
| 442 | outputMap_["DENSITY"] =  DENSITY; | 
| 443 |  | 
| 444 | if (hasOutputFields) { | 
| 445 | parseOutputFileFormat(rnemdParams->getOutputFields()); | 
| 446 | } else { | 
| 447 | if (usePeriodicBoundaryConditions_) | 
| 448 | outputMask_.set(Z); | 
| 449 | else | 
| 450 | outputMask_.set(R); | 
| 451 | switch (rnemdFluxType_) { | 
| 452 | case rnemdKE: | 
| 453 | case rnemdRotKE: | 
| 454 | case rnemdFullKE: | 
| 455 | outputMask_.set(TEMPERATURE); | 
| 456 | break; | 
| 457 | case rnemdPx: | 
| 458 | case rnemdPy: | 
| 459 | outputMask_.set(VELOCITY); | 
| 460 | break; | 
| 461 | case rnemdPz: | 
| 462 | case rnemdPvector: | 
| 463 | outputMask_.set(VELOCITY); | 
| 464 | outputMask_.set(DENSITY); | 
| 465 | break; | 
| 466 | case rnemdLx: | 
| 467 | case rnemdLy: | 
| 468 | case rnemdLz: | 
| 469 | case rnemdLvector: | 
| 470 | outputMask_.set(ANGULARVELOCITY); | 
| 471 | break; | 
| 472 | case rnemdKeLx: | 
| 473 | case rnemdKeLy: | 
| 474 | case rnemdKeLz: | 
| 475 | case rnemdKeLvector: | 
| 476 | outputMask_.set(TEMPERATURE); | 
| 477 | outputMask_.set(ANGULARVELOCITY); | 
| 478 | break; | 
| 479 | case rnemdKePx: | 
| 480 | case rnemdKePy: | 
| 481 | outputMask_.set(TEMPERATURE); | 
| 482 | outputMask_.set(VELOCITY); | 
| 483 | break; | 
| 484 | case rnemdKePvector: | 
| 485 | outputMask_.set(TEMPERATURE); | 
| 486 | outputMask_.set(VELOCITY); | 
| 487 | outputMask_.set(DENSITY); | 
| 488 | break; | 
| 489 | default: | 
| 490 | break; | 
| 491 | } | 
| 492 | } | 
| 493 |  | 
| 494 | if (hasOutputFileName) { | 
| 495 | rnemdFileName_ = rnemdParams->getOutputFileName(); | 
| 496 | } else { | 
| 497 | rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; | 
| 498 | } | 
| 499 |  | 
| 500 | exchangeTime_ = rnemdParams->getExchangeTime(); | 
| 501 |  | 
| 502 | Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); | 
| 503 | // total exchange sums are zeroed out at the beginning: | 
| 504 |  | 
| 505 | kineticExchange_ = 0.0; | 
| 506 | momentumExchange_ = V3Zero; | 
| 507 | angularMomentumExchange_ = V3Zero; | 
| 508 |  | 
| 509 | std::ostringstream selectionAstream; | 
| 510 | std::ostringstream selectionBstream; | 
| 511 |  | 
| 512 | if (hasSelectionA_) { | 
| 513 | selectionA_ = rnemdParams->getSelectionA(); | 
| 514 | } else { | 
| 515 | if (usePeriodicBoundaryConditions_) { | 
| 516 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 517 |  | 
| 518 | if (hasSlabWidth) | 
| 519 | slabWidth_ = rnemdParams->getSlabWidth(); | 
| 520 | else | 
| 521 | slabWidth_ = hmat(2,2) / 10.0; | 
| 522 |  | 
| 523 | if (hasSlabACenter) | 
| 524 | slabACenter_ = rnemdParams->getSlabACenter(); | 
| 525 | else | 
| 526 | slabACenter_ = 0.0; | 
| 527 |  | 
| 528 | selectionAstream << "select wrappedz > " | 
| 529 | << slabACenter_ - 0.5*slabWidth_ | 
| 530 | <<  " && wrappedz < " | 
| 531 | << slabACenter_ + 0.5*slabWidth_; | 
| 532 | selectionA_ = selectionAstream.str(); | 
| 533 | } else { | 
| 534 | if (hasSphereARadius) | 
| 535 | sphereARadius_ = rnemdParams->getSphereARadius(); | 
| 536 | else { | 
| 537 | // use an initial guess to the size of the inner slab to be 1/10 the | 
| 538 | // radius of an approximately spherical hull: | 
| 539 | Thermo thermo(info); | 
| 540 | RealType hVol = thermo.getHullVolume(); | 
| 541 | sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0); | 
| 542 | } | 
| 543 | selectionAstream << "select r < " << sphereARadius_; | 
| 544 | selectionA_ = selectionAstream.str(); | 
| 545 | } | 
| 546 | } | 
| 547 |  | 
| 548 | if (hasSelectionB_) { | 
| 549 | selectionB_ = rnemdParams->getSelectionB(); | 
| 550 |  | 
| 551 | } else { | 
| 552 | if (usePeriodicBoundaryConditions_) { | 
| 553 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 554 |  | 
| 555 | if (hasSlabWidth) | 
| 556 | slabWidth_ = rnemdParams->getSlabWidth(); | 
| 557 | else | 
| 558 | slabWidth_ = hmat(2,2) / 10.0; | 
| 559 |  | 
| 560 | if (hasSlabBCenter) | 
| 561 | slabBCenter_ = rnemdParams->getSlabBCenter(); | 
| 562 | else | 
| 563 | slabBCenter_ = hmat(2,2) / 2.0; | 
| 564 |  | 
| 565 | selectionBstream << "select wrappedz > " | 
| 566 | << slabBCenter_ - 0.5*slabWidth_ | 
| 567 | <<  " && wrappedz < " | 
| 568 | << slabBCenter_ + 0.5*slabWidth_; | 
| 569 | selectionB_ = selectionBstream.str(); | 
| 570 | } else { | 
| 571 | if (hasSphereBRadius_) { | 
| 572 | sphereBRadius_ = rnemdParams->getSphereBRadius(); | 
| 573 | selectionBstream << "select r > " << sphereBRadius_; | 
| 574 | selectionB_ = selectionBstream.str(); | 
| 575 | } else { | 
| 576 | selectionB_ = "select hull"; | 
| 577 | BisHull_ = true; | 
| 578 | hasSelectionB_ = true; | 
| 579 | } | 
| 580 | } | 
| 581 | } | 
| 582 | } | 
| 583 |  | 
| 584 | // object evaluator: | 
| 585 | evaluator_.loadScriptString(rnemdObjectSelection_); | 
| 586 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 587 | evaluatorA_.loadScriptString(selectionA_); | 
| 588 | evaluatorB_.loadScriptString(selectionB_); | 
| 589 | seleManA_.setSelectionSet(evaluatorA_.evaluate()); | 
| 590 | seleManB_.setSelectionSet(evaluatorB_.evaluate()); | 
| 591 | commonA_ = seleManA_ & seleMan_; | 
| 592 | commonB_ = seleManB_ & seleMan_; | 
| 593 | } | 
| 594 |  | 
| 595 |  | 
| 596 | RNEMD::~RNEMD() { | 
| 597 | if (!doRNEMD_) return; | 
| 598 | #ifdef IS_MPI | 
| 599 | if (worldRank == 0) { | 
| 600 | #endif | 
| 601 |  | 
| 602 | writeOutputFile(); | 
| 603 |  | 
| 604 | rnemdFile_.close(); | 
| 605 |  | 
| 606 | #ifdef IS_MPI | 
| 607 | } | 
| 608 | #endif | 
| 609 |  | 
| 610 | // delete all of the objects we created: | 
| 611 | delete areaAccumulator_; | 
| 612 | data_.clear(); | 
| 613 | } | 
| 614 |  | 
| 615 | void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { | 
| 616 | if (!doRNEMD_) return; | 
| 617 | int selei; | 
| 618 | int selej; | 
| 619 |  | 
| 620 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 621 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 622 |  | 
| 623 | StuntDouble* sd; | 
| 624 |  | 
| 625 | RealType min_val; | 
| 626 | bool min_found = false; | 
| 627 | StuntDouble* min_sd; | 
| 628 |  | 
| 629 | RealType max_val; | 
| 630 | bool max_found = false; | 
| 631 | StuntDouble* max_sd; | 
| 632 |  | 
| 633 | for (sd = seleManA_.beginSelected(selei); sd != NULL; | 
| 634 | sd = seleManA_.nextSelected(selei)) { | 
| 635 |  | 
| 636 | Vector3d pos = sd->getPos(); | 
| 637 |  | 
| 638 | // wrap the stuntdouble's position back into the box: | 
| 639 |  | 
| 640 | if (usePeriodicBoundaryConditions_) | 
| 641 | currentSnap_->wrapVector(pos); | 
| 642 |  | 
| 643 | RealType mass = sd->getMass(); | 
| 644 | Vector3d vel = sd->getVel(); | 
| 645 | RealType value; | 
| 646 |  | 
| 647 | switch(rnemdFluxType_) { | 
| 648 | case rnemdKE : | 
| 649 |  | 
| 650 | value = mass * vel.lengthSquare(); | 
| 651 |  | 
| 652 | if (sd->isDirectional()) { | 
| 653 | Vector3d angMom = sd->getJ(); | 
| 654 | Mat3x3d I = sd->getI(); | 
| 655 |  | 
| 656 | if (sd->isLinear()) { | 
| 657 | int i = sd->linearAxis(); | 
| 658 | int j = (i + 1) % 3; | 
| 659 | int k = (i + 2) % 3; | 
| 660 | value += angMom[j] * angMom[j] / I(j, j) + | 
| 661 | angMom[k] * angMom[k] / I(k, k); | 
| 662 | } else { | 
| 663 | value += angMom[0]*angMom[0]/I(0, 0) | 
| 664 | + angMom[1]*angMom[1]/I(1, 1) | 
| 665 | + angMom[2]*angMom[2]/I(2, 2); | 
| 666 | } | 
| 667 | } //angular momenta exchange enabled | 
| 668 | value *= 0.5; | 
| 669 | break; | 
| 670 | case rnemdPx : | 
| 671 | value = mass * vel[0]; | 
| 672 | break; | 
| 673 | case rnemdPy : | 
| 674 | value = mass * vel[1]; | 
| 675 | break; | 
| 676 | case rnemdPz : | 
| 677 | value = mass * vel[2]; | 
| 678 | break; | 
| 679 | default : | 
| 680 | break; | 
| 681 | } | 
| 682 | if (!max_found) { | 
| 683 | max_val = value; | 
| 684 | max_sd = sd; | 
| 685 | max_found = true; | 
| 686 | } else { | 
| 687 | if (max_val < value) { | 
| 688 | max_val = value; | 
| 689 | max_sd = sd; | 
| 690 | } | 
| 691 | } | 
| 692 | } | 
| 693 |  | 
| 694 | for (sd = seleManB_.beginSelected(selej); sd != NULL; | 
| 695 | sd = seleManB_.nextSelected(selej)) { | 
| 696 |  | 
| 697 | Vector3d pos = sd->getPos(); | 
| 698 |  | 
| 699 | // wrap the stuntdouble's position back into the box: | 
| 700 |  | 
| 701 | if (usePeriodicBoundaryConditions_) | 
| 702 | currentSnap_->wrapVector(pos); | 
| 703 |  | 
| 704 | RealType mass = sd->getMass(); | 
| 705 | Vector3d vel = sd->getVel(); | 
| 706 | RealType value; | 
| 707 |  | 
| 708 | switch(rnemdFluxType_) { | 
| 709 | case rnemdKE : | 
| 710 |  | 
| 711 | value = mass * vel.lengthSquare(); | 
| 712 |  | 
| 713 | if (sd->isDirectional()) { | 
| 714 | Vector3d angMom = sd->getJ(); | 
| 715 | Mat3x3d I = sd->getI(); | 
| 716 |  | 
| 717 | if (sd->isLinear()) { | 
| 718 | int i = sd->linearAxis(); | 
| 719 | int j = (i + 1) % 3; | 
| 720 | int k = (i + 2) % 3; | 
| 721 | value += angMom[j] * angMom[j] / I(j, j) + | 
| 722 | angMom[k] * angMom[k] / I(k, k); | 
| 723 | } else { | 
| 724 | value += angMom[0]*angMom[0]/I(0, 0) | 
| 725 | + angMom[1]*angMom[1]/I(1, 1) | 
| 726 | + angMom[2]*angMom[2]/I(2, 2); | 
| 727 | } | 
| 728 | } //angular momenta exchange enabled | 
| 729 | value *= 0.5; | 
| 730 | break; | 
| 731 | case rnemdPx : | 
| 732 | value = mass * vel[0]; | 
| 733 | break; | 
| 734 | case rnemdPy : | 
| 735 | value = mass * vel[1]; | 
| 736 | break; | 
| 737 | case rnemdPz : | 
| 738 | value = mass * vel[2]; | 
| 739 | break; | 
| 740 | default : | 
| 741 | break; | 
| 742 | } | 
| 743 |  | 
| 744 | if (!min_found) { | 
| 745 | min_val = value; | 
| 746 | min_sd = sd; | 
| 747 | min_found = true; | 
| 748 | } else { | 
| 749 | if (min_val > value) { | 
| 750 | min_val = value; | 
| 751 | min_sd = sd; | 
| 752 | } | 
| 753 | } | 
| 754 | } | 
| 755 |  | 
| 756 | #ifdef IS_MPI | 
| 757 | int worldRank = MPI::COMM_WORLD.Get_rank(); | 
| 758 |  | 
| 759 | bool my_min_found = min_found; | 
| 760 | bool my_max_found = max_found; | 
| 761 |  | 
| 762 | // Even if we didn't find a minimum, did someone else? | 
| 763 | MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR); | 
| 764 | // Even if we didn't find a maximum, did someone else? | 
| 765 | MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR); | 
| 766 | #endif | 
| 767 |  | 
| 768 | if (max_found && min_found) { | 
| 769 |  | 
| 770 | #ifdef IS_MPI | 
| 771 | struct { | 
| 772 | RealType val; | 
| 773 | int rank; | 
| 774 | } max_vals, min_vals; | 
| 775 |  | 
| 776 | if (my_min_found) { | 
| 777 | min_vals.val = min_val; | 
| 778 | } else { | 
| 779 | min_vals.val = HONKING_LARGE_VALUE; | 
| 780 | } | 
| 781 | min_vals.rank = worldRank; | 
| 782 |  | 
| 783 | // Who had the minimum? | 
| 784 | MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals, | 
| 785 | 1, MPI::REALTYPE_INT, MPI::MINLOC); | 
| 786 | min_val = min_vals.val; | 
| 787 |  | 
| 788 | if (my_max_found) { | 
| 789 | max_vals.val = max_val; | 
| 790 | } else { | 
| 791 | max_vals.val = -HONKING_LARGE_VALUE; | 
| 792 | } | 
| 793 | max_vals.rank = worldRank; | 
| 794 |  | 
| 795 | // Who had the maximum? | 
| 796 | MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals, | 
| 797 | 1, MPI::REALTYPE_INT, MPI::MAXLOC); | 
| 798 | max_val = max_vals.val; | 
| 799 | #endif | 
| 800 |  | 
| 801 | if (min_val < max_val) { | 
| 802 |  | 
| 803 | #ifdef IS_MPI | 
| 804 | if (max_vals.rank == worldRank && min_vals.rank == worldRank) { | 
| 805 | // I have both maximum and minimum, so proceed like a single | 
| 806 | // processor version: | 
| 807 | #endif | 
| 808 |  | 
| 809 | Vector3d min_vel = min_sd->getVel(); | 
| 810 | Vector3d max_vel = max_sd->getVel(); | 
| 811 | RealType temp_vel; | 
| 812 |  | 
| 813 | switch(rnemdFluxType_) { | 
| 814 | case rnemdKE : | 
| 815 | min_sd->setVel(max_vel); | 
| 816 | max_sd->setVel(min_vel); | 
| 817 | if (min_sd->isDirectional() && max_sd->isDirectional()) { | 
| 818 | Vector3d min_angMom = min_sd->getJ(); | 
| 819 | Vector3d max_angMom = max_sd->getJ(); | 
| 820 | min_sd->setJ(max_angMom); | 
| 821 | max_sd->setJ(min_angMom); | 
| 822 | }//angular momenta exchange enabled | 
| 823 | //assumes same rigid body identity | 
| 824 | break; | 
| 825 | case rnemdPx : | 
| 826 | temp_vel = min_vel.x(); | 
| 827 | min_vel.x() = max_vel.x(); | 
| 828 | max_vel.x() = temp_vel; | 
| 829 | min_sd->setVel(min_vel); | 
| 830 | max_sd->setVel(max_vel); | 
| 831 | break; | 
| 832 | case rnemdPy : | 
| 833 | temp_vel = min_vel.y(); | 
| 834 | min_vel.y() = max_vel.y(); | 
| 835 | max_vel.y() = temp_vel; | 
| 836 | min_sd->setVel(min_vel); | 
| 837 | max_sd->setVel(max_vel); | 
| 838 | break; | 
| 839 | case rnemdPz : | 
| 840 | temp_vel = min_vel.z(); | 
| 841 | min_vel.z() = max_vel.z(); | 
| 842 | max_vel.z() = temp_vel; | 
| 843 | min_sd->setVel(min_vel); | 
| 844 | max_sd->setVel(max_vel); | 
| 845 | break; | 
| 846 | default : | 
| 847 | break; | 
| 848 | } | 
| 849 |  | 
| 850 | #ifdef IS_MPI | 
| 851 | // the rest of the cases only apply in parallel simulations: | 
| 852 | } else if (max_vals.rank == worldRank) { | 
| 853 | // I had the max, but not the minimum | 
| 854 |  | 
| 855 | Vector3d min_vel; | 
| 856 | Vector3d max_vel = max_sd->getVel(); | 
| 857 | MPI::Status status; | 
| 858 |  | 
| 859 | // point-to-point swap of the velocity vector | 
| 860 | MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE, | 
| 861 | min_vals.rank, 0, | 
| 862 | min_vel.getArrayPointer(), 3, MPI::REALTYPE, | 
| 863 | min_vals.rank, 0, status); | 
| 864 |  | 
| 865 | switch(rnemdFluxType_) { | 
| 866 | case rnemdKE : | 
| 867 | max_sd->setVel(min_vel); | 
| 868 | //angular momenta exchange enabled | 
| 869 | if (max_sd->isDirectional()) { | 
| 870 | Vector3d min_angMom; | 
| 871 | Vector3d max_angMom = max_sd->getJ(); | 
| 872 |  | 
| 873 | // point-to-point swap of the angular momentum vector | 
| 874 | MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3, | 
| 875 | MPI::REALTYPE, min_vals.rank, 1, | 
| 876 | min_angMom.getArrayPointer(), 3, | 
| 877 | MPI::REALTYPE, min_vals.rank, 1, | 
| 878 | status); | 
| 879 |  | 
| 880 | max_sd->setJ(min_angMom); | 
| 881 | } | 
| 882 | break; | 
| 883 | case rnemdPx : | 
| 884 | max_vel.x() = min_vel.x(); | 
| 885 | max_sd->setVel(max_vel); | 
| 886 | break; | 
| 887 | case rnemdPy : | 
| 888 | max_vel.y() = min_vel.y(); | 
| 889 | max_sd->setVel(max_vel); | 
| 890 | break; | 
| 891 | case rnemdPz : | 
| 892 | max_vel.z() = min_vel.z(); | 
| 893 | max_sd->setVel(max_vel); | 
| 894 | break; | 
| 895 | default : | 
| 896 | break; | 
| 897 | } | 
| 898 | } else if (min_vals.rank == worldRank) { | 
| 899 | // I had the minimum but not the maximum: | 
| 900 |  | 
| 901 | Vector3d max_vel; | 
| 902 | Vector3d min_vel = min_sd->getVel(); | 
| 903 | MPI::Status status; | 
| 904 |  | 
| 905 | // point-to-point swap of the velocity vector | 
| 906 | MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE, | 
| 907 | max_vals.rank, 0, | 
| 908 | max_vel.getArrayPointer(), 3, MPI::REALTYPE, | 
| 909 | max_vals.rank, 0, status); | 
| 910 |  | 
| 911 | switch(rnemdFluxType_) { | 
| 912 | case rnemdKE : | 
| 913 | min_sd->setVel(max_vel); | 
| 914 | //angular momenta exchange enabled | 
| 915 | if (min_sd->isDirectional()) { | 
| 916 | Vector3d min_angMom = min_sd->getJ(); | 
| 917 | Vector3d max_angMom; | 
| 918 |  | 
| 919 | // point-to-point swap of the angular momentum vector | 
| 920 | MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3, | 
| 921 | MPI::REALTYPE, max_vals.rank, 1, | 
| 922 | max_angMom.getArrayPointer(), 3, | 
| 923 | MPI::REALTYPE, max_vals.rank, 1, | 
| 924 | status); | 
| 925 |  | 
| 926 | min_sd->setJ(max_angMom); | 
| 927 | } | 
| 928 | break; | 
| 929 | case rnemdPx : | 
| 930 | min_vel.x() = max_vel.x(); | 
| 931 | min_sd->setVel(min_vel); | 
| 932 | break; | 
| 933 | case rnemdPy : | 
| 934 | min_vel.y() = max_vel.y(); | 
| 935 | min_sd->setVel(min_vel); | 
| 936 | break; | 
| 937 | case rnemdPz : | 
| 938 | min_vel.z() = max_vel.z(); | 
| 939 | min_sd->setVel(min_vel); | 
| 940 | break; | 
| 941 | default : | 
| 942 | break; | 
| 943 | } | 
| 944 | } | 
| 945 | #endif | 
| 946 |  | 
| 947 | switch(rnemdFluxType_) { | 
| 948 | case rnemdKE: | 
| 949 | kineticExchange_ += max_val - min_val; | 
| 950 | break; | 
| 951 | case rnemdPx: | 
| 952 | momentumExchange_.x() += max_val - min_val; | 
| 953 | break; | 
| 954 | case rnemdPy: | 
| 955 | momentumExchange_.y() += max_val - min_val; | 
| 956 | break; | 
| 957 | case rnemdPz: | 
| 958 | momentumExchange_.z() += max_val - min_val; | 
| 959 | break; | 
| 960 | default: | 
| 961 | break; | 
| 962 | } | 
| 963 | } else { | 
| 964 | sprintf(painCave.errMsg, | 
| 965 | "RNEMD::doSwap exchange NOT performed because min_val > max_val\n"); | 
| 966 | painCave.isFatal = 0; | 
| 967 | painCave.severity = OPENMD_INFO; | 
| 968 | simError(); | 
| 969 | failTrialCount_++; | 
| 970 | } | 
| 971 | } else { | 
| 972 | sprintf(painCave.errMsg, | 
| 973 | "RNEMD::doSwap exchange NOT performed because selected object\n" | 
| 974 | "\twas not present in at least one of the two slabs.\n"); | 
| 975 | painCave.isFatal = 0; | 
| 976 | painCave.severity = OPENMD_INFO; | 
| 977 | simError(); | 
| 978 | failTrialCount_++; | 
| 979 | } | 
| 980 | } | 
| 981 |  | 
| 982 | void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) { | 
| 983 | if (!doRNEMD_) return; | 
| 984 | int selei; | 
| 985 | int selej; | 
| 986 |  | 
| 987 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 988 | RealType time = currentSnap_->getTime(); | 
| 989 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 990 |  | 
| 991 | StuntDouble* sd; | 
| 992 |  | 
| 993 | vector<StuntDouble*> hotBin, coldBin; | 
| 994 |  | 
| 995 | RealType Phx = 0.0; | 
| 996 | RealType Phy = 0.0; | 
| 997 | RealType Phz = 0.0; | 
| 998 | RealType Khx = 0.0; | 
| 999 | RealType Khy = 0.0; | 
| 1000 | RealType Khz = 0.0; | 
| 1001 | RealType Khw = 0.0; | 
| 1002 | RealType Pcx = 0.0; | 
| 1003 | RealType Pcy = 0.0; | 
| 1004 | RealType Pcz = 0.0; | 
| 1005 | RealType Kcx = 0.0; | 
| 1006 | RealType Kcy = 0.0; | 
| 1007 | RealType Kcz = 0.0; | 
| 1008 | RealType Kcw = 0.0; | 
| 1009 |  | 
| 1010 | for (sd = smanA.beginSelected(selei); sd != NULL; | 
| 1011 | sd = smanA.nextSelected(selei)) { | 
| 1012 |  | 
| 1013 | Vector3d pos = sd->getPos(); | 
| 1014 |  | 
| 1015 | // wrap the stuntdouble's position back into the box: | 
| 1016 |  | 
| 1017 | if (usePeriodicBoundaryConditions_) | 
| 1018 | currentSnap_->wrapVector(pos); | 
| 1019 |  | 
| 1020 |  | 
| 1021 | RealType mass = sd->getMass(); | 
| 1022 | Vector3d vel = sd->getVel(); | 
| 1023 |  | 
| 1024 | hotBin.push_back(sd); | 
| 1025 | Phx += mass * vel.x(); | 
| 1026 | Phy += mass * vel.y(); | 
| 1027 | Phz += mass * vel.z(); | 
| 1028 | Khx += mass * vel.x() * vel.x(); | 
| 1029 | Khy += mass * vel.y() * vel.y(); | 
| 1030 | Khz += mass * vel.z() * vel.z(); | 
| 1031 | if (sd->isDirectional()) { | 
| 1032 | Vector3d angMom = sd->getJ(); | 
| 1033 | Mat3x3d I = sd->getI(); | 
| 1034 | if (sd->isLinear()) { | 
| 1035 | int i = sd->linearAxis(); | 
| 1036 | int j = (i + 1) % 3; | 
| 1037 | int k = (i + 2) % 3; | 
| 1038 | Khw += angMom[j] * angMom[j] / I(j, j) + | 
| 1039 | angMom[k] * angMom[k] / I(k, k); | 
| 1040 | } else { | 
| 1041 | Khw += angMom[0]*angMom[0]/I(0, 0) | 
| 1042 | + angMom[1]*angMom[1]/I(1, 1) | 
| 1043 | + angMom[2]*angMom[2]/I(2, 2); | 
| 1044 | } | 
| 1045 | } | 
| 1046 | } | 
| 1047 | for (sd = smanB.beginSelected(selej); sd != NULL; | 
| 1048 | sd = smanB.nextSelected(selej)) { | 
| 1049 | Vector3d pos = sd->getPos(); | 
| 1050 |  | 
| 1051 | // wrap the stuntdouble's position back into the box: | 
| 1052 |  | 
| 1053 | if (usePeriodicBoundaryConditions_) | 
| 1054 | currentSnap_->wrapVector(pos); | 
| 1055 |  | 
| 1056 | RealType mass = sd->getMass(); | 
| 1057 | Vector3d vel = sd->getVel(); | 
| 1058 |  | 
| 1059 | coldBin.push_back(sd); | 
| 1060 | Pcx += mass * vel.x(); | 
| 1061 | Pcy += mass * vel.y(); | 
| 1062 | Pcz += mass * vel.z(); | 
| 1063 | Kcx += mass * vel.x() * vel.x(); | 
| 1064 | Kcy += mass * vel.y() * vel.y(); | 
| 1065 | Kcz += mass * vel.z() * vel.z(); | 
| 1066 | if (sd->isDirectional()) { | 
| 1067 | Vector3d angMom = sd->getJ(); | 
| 1068 | Mat3x3d I = sd->getI(); | 
| 1069 | if (sd->isLinear()) { | 
| 1070 | int i = sd->linearAxis(); | 
| 1071 | int j = (i + 1) % 3; | 
| 1072 | int k = (i + 2) % 3; | 
| 1073 | Kcw += angMom[j] * angMom[j] / I(j, j) + | 
| 1074 | angMom[k] * angMom[k] / I(k, k); | 
| 1075 | } else { | 
| 1076 | Kcw += angMom[0]*angMom[0]/I(0, 0) | 
| 1077 | + angMom[1]*angMom[1]/I(1, 1) | 
| 1078 | + angMom[2]*angMom[2]/I(2, 2); | 
| 1079 | } | 
| 1080 | } | 
| 1081 | } | 
| 1082 |  | 
| 1083 | Khx *= 0.5; | 
| 1084 | Khy *= 0.5; | 
| 1085 | Khz *= 0.5; | 
| 1086 | Khw *= 0.5; | 
| 1087 | Kcx *= 0.5; | 
| 1088 | Kcy *= 0.5; | 
| 1089 | Kcz *= 0.5; | 
| 1090 | Kcw *= 0.5; | 
| 1091 |  | 
| 1092 | #ifdef IS_MPI | 
| 1093 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM); | 
| 1094 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM); | 
| 1095 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM); | 
| 1096 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM); | 
| 1097 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM); | 
| 1098 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM); | 
| 1099 |  | 
| 1100 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM); | 
| 1101 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM); | 
| 1102 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM); | 
| 1103 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM); | 
| 1104 |  | 
| 1105 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM); | 
| 1106 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM); | 
| 1107 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM); | 
| 1108 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM); | 
| 1109 | #endif | 
| 1110 |  | 
| 1111 | //solve coldBin coeff's first | 
| 1112 | RealType px = Pcx / Phx; | 
| 1113 | RealType py = Pcy / Phy; | 
| 1114 | RealType pz = Pcz / Phz; | 
| 1115 | RealType c, x, y, z; | 
| 1116 | bool successfulScale = false; | 
| 1117 | if ((rnemdFluxType_ == rnemdFullKE) || | 
| 1118 | (rnemdFluxType_ == rnemdRotKE)) { | 
| 1119 | //may need sanity check Khw & Kcw > 0 | 
| 1120 |  | 
| 1121 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1122 | c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw); | 
| 1123 | } else { | 
| 1124 | c = 1.0 - kineticTarget_ / Kcw; | 
| 1125 | } | 
| 1126 |  | 
| 1127 | if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients | 
| 1128 | c = sqrt(c); | 
| 1129 |  | 
| 1130 | RealType w = 0.0; | 
| 1131 | if (rnemdFluxType_ ==  rnemdFullKE) { | 
| 1132 | x = 1.0 + px * (1.0 - c); | 
| 1133 | y = 1.0 + py * (1.0 - c); | 
| 1134 | z = 1.0 + pz * (1.0 - c); | 
| 1135 | /* more complicated way | 
| 1136 | w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz | 
| 1137 | + Khx * px * px + Khy * py * py + Khz * pz * pz) | 
| 1138 | - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py) | 
| 1139 | + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px) | 
| 1140 | + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) | 
| 1141 | - Kcx - Kcy - Kcz)) / Khw; the following is simpler | 
| 1142 | */ | 
| 1143 | if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) && | 
| 1144 | (fabs(z - 1.0) < 0.1)) { | 
| 1145 | w = 1.0 + (kineticTarget_ | 
| 1146 | + Khx * (1.0 - x * x) + Khy * (1.0 - y * y) | 
| 1147 | + Khz * (1.0 - z * z)) / Khw; | 
| 1148 | }//no need to calculate w if x, y or z is out of range | 
| 1149 | } else { | 
| 1150 | w = 1.0 + kineticTarget_ / Khw; | 
| 1151 | } | 
| 1152 | if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients | 
| 1153 | //if w is in the right range, so should be x, y, z. | 
| 1154 | vector<StuntDouble*>::iterator sdi; | 
| 1155 | Vector3d vel; | 
| 1156 | for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { | 
| 1157 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1158 | vel = (*sdi)->getVel() * c; | 
| 1159 | (*sdi)->setVel(vel); | 
| 1160 | } | 
| 1161 | if ((*sdi)->isDirectional()) { | 
| 1162 | Vector3d angMom = (*sdi)->getJ() * c; | 
| 1163 | (*sdi)->setJ(angMom); | 
| 1164 | } | 
| 1165 | } | 
| 1166 | w = sqrt(w); | 
| 1167 | for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { | 
| 1168 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1169 | vel = (*sdi)->getVel(); | 
| 1170 | vel.x() *= x; | 
| 1171 | vel.y() *= y; | 
| 1172 | vel.z() *= z; | 
| 1173 | (*sdi)->setVel(vel); | 
| 1174 | } | 
| 1175 | if ((*sdi)->isDirectional()) { | 
| 1176 | Vector3d angMom = (*sdi)->getJ() * w; | 
| 1177 | (*sdi)->setJ(angMom); | 
| 1178 | } | 
| 1179 | } | 
| 1180 | successfulScale = true; | 
| 1181 | kineticExchange_ += kineticTarget_; | 
| 1182 | } | 
| 1183 | } | 
| 1184 | } else { | 
| 1185 | RealType a000, a110, c0, a001, a111, b01, b11, c1; | 
| 1186 | switch(rnemdFluxType_) { | 
| 1187 | case rnemdKE : | 
| 1188 | /* used hotBin coeff's & only scale x & y dimensions | 
| 1189 | RealType px = Phx / Pcx; | 
| 1190 | RealType py = Phy / Pcy; | 
| 1191 | a110 = Khy; | 
| 1192 | c0 = - Khx - Khy - kineticTarget_; | 
| 1193 | a000 = Khx; | 
| 1194 | a111 = Kcy * py * py; | 
| 1195 | b11 = -2.0 * Kcy * py * (1.0 + py); | 
| 1196 | c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_; | 
| 1197 | b01 = -2.0 * Kcx * px * (1.0 + px); | 
| 1198 | a001 = Kcx * px * px; | 
| 1199 | */ | 
| 1200 | //scale all three dimensions, let c_x = c_y | 
| 1201 | a000 = Kcx + Kcy; | 
| 1202 | a110 = Kcz; | 
| 1203 | c0 = kineticTarget_ - Kcx - Kcy - Kcz; | 
| 1204 | a001 = Khx * px * px + Khy * py * py; | 
| 1205 | a111 = Khz * pz * pz; | 
| 1206 | b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); | 
| 1207 | b11 = -2.0 * Khz * pz * (1.0 + pz); | 
| 1208 | c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) | 
| 1209 | + Khz * pz * (2.0 + pz) - kineticTarget_; | 
| 1210 | break; | 
| 1211 | case rnemdPx : | 
| 1212 | c = 1 - momentumTarget_.x() / Pcx; | 
| 1213 | a000 = Kcy; | 
| 1214 | a110 = Kcz; | 
| 1215 | c0 = Kcx * c * c - Kcx - Kcy - Kcz; | 
| 1216 | a001 = py * py * Khy; | 
| 1217 | a111 = pz * pz * Khz; | 
| 1218 | b01 = -2.0 * Khy * py * (1.0 + py); | 
| 1219 | b11 = -2.0 * Khz * pz * (1.0 + pz); | 
| 1220 | c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) | 
| 1221 | + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); | 
| 1222 | break; | 
| 1223 | case rnemdPy : | 
| 1224 | c = 1 - momentumTarget_.y() / Pcy; | 
| 1225 | a000 = Kcx; | 
| 1226 | a110 = Kcz; | 
| 1227 | c0 = Kcy * c * c - Kcx - Kcy - Kcz; | 
| 1228 | a001 = px * px * Khx; | 
| 1229 | a111 = pz * pz * Khz; | 
| 1230 | b01 = -2.0 * Khx * px * (1.0 + px); | 
| 1231 | b11 = -2.0 * Khz * pz * (1.0 + pz); | 
| 1232 | c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) | 
| 1233 | + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); | 
| 1234 | break; | 
| 1235 | case rnemdPz ://we don't really do this, do we? | 
| 1236 | c = 1 - momentumTarget_.z() / Pcz; | 
| 1237 | a000 = Kcx; | 
| 1238 | a110 = Kcy; | 
| 1239 | c0 = Kcz * c * c - Kcx - Kcy - Kcz; | 
| 1240 | a001 = px * px * Khx; | 
| 1241 | a111 = py * py * Khy; | 
| 1242 | b01 = -2.0 * Khx * px * (1.0 + px); | 
| 1243 | b11 = -2.0 * Khy * py * (1.0 + py); | 
| 1244 | c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) | 
| 1245 | + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); | 
| 1246 | break; | 
| 1247 | default : | 
| 1248 | break; | 
| 1249 | } | 
| 1250 |  | 
| 1251 | RealType v1 = a000 * a111 - a001 * a110; | 
| 1252 | RealType v2 = a000 * b01; | 
| 1253 | RealType v3 = a000 * b11; | 
| 1254 | RealType v4 = a000 * c1 - a001 * c0; | 
| 1255 | RealType v8 = a110 * b01; | 
| 1256 | RealType v10 = - b01 * c0; | 
| 1257 |  | 
| 1258 | RealType u0 = v2 * v10 - v4 * v4; | 
| 1259 | RealType u1 = -2.0 * v3 * v4; | 
| 1260 | RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; | 
| 1261 | RealType u3 = -2.0 * v1 * v3; | 
| 1262 | RealType u4 = - v1 * v1; | 
| 1263 | //rescale coefficients | 
| 1264 | RealType maxAbs = fabs(u0); | 
| 1265 | if (maxAbs < fabs(u1)) maxAbs = fabs(u1); | 
| 1266 | if (maxAbs < fabs(u2)) maxAbs = fabs(u2); | 
| 1267 | if (maxAbs < fabs(u3)) maxAbs = fabs(u3); | 
| 1268 | if (maxAbs < fabs(u4)) maxAbs = fabs(u4); | 
| 1269 | u0 /= maxAbs; | 
| 1270 | u1 /= maxAbs; | 
| 1271 | u2 /= maxAbs; | 
| 1272 | u3 /= maxAbs; | 
| 1273 | u4 /= maxAbs; | 
| 1274 | //max_element(start, end) is also available. | 
| 1275 | Polynomial<RealType> poly; //same as DoublePolynomial poly; | 
| 1276 | poly.setCoefficient(4, u4); | 
| 1277 | poly.setCoefficient(3, u3); | 
| 1278 | poly.setCoefficient(2, u2); | 
| 1279 | poly.setCoefficient(1, u1); | 
| 1280 | poly.setCoefficient(0, u0); | 
| 1281 | vector<RealType> realRoots = poly.FindRealRoots(); | 
| 1282 |  | 
| 1283 | vector<RealType>::iterator ri; | 
| 1284 | RealType r1, r2, alpha0; | 
| 1285 | vector<pair<RealType,RealType> > rps; | 
| 1286 | for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) { | 
| 1287 | r2 = *ri; | 
| 1288 | //check if FindRealRoots() give the right answer | 
| 1289 | if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { | 
| 1290 | sprintf(painCave.errMsg, | 
| 1291 | "RNEMD Warning: polynomial solve seems to have an error!"); | 
| 1292 | painCave.isFatal = 0; | 
| 1293 | simError(); | 
| 1294 | failRootCount_++; | 
| 1295 | } | 
| 1296 | //might not be useful w/o rescaling coefficients | 
| 1297 | alpha0 = -c0 - a110 * r2 * r2; | 
| 1298 | if (alpha0 >= 0.0) { | 
| 1299 | r1 = sqrt(alpha0 / a000); | 
| 1300 | if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) | 
| 1301 | < 1e-6) | 
| 1302 | { rps.push_back(make_pair(r1, r2)); } | 
| 1303 | if (r1 > 1e-6) { //r1 non-negative | 
| 1304 | r1 = -r1; | 
| 1305 | if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) | 
| 1306 | < 1e-6) | 
| 1307 | { rps.push_back(make_pair(r1, r2)); } | 
| 1308 | } | 
| 1309 | } | 
| 1310 | } | 
| 1311 | // Consider combining together the solving pair part w/ the searching | 
| 1312 | // best solution part so that we don't need the pairs vector | 
| 1313 | if (!rps.empty()) { | 
| 1314 | RealType smallestDiff = HONKING_LARGE_VALUE; | 
| 1315 | RealType diff; | 
| 1316 | pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); | 
| 1317 | vector<pair<RealType,RealType> >::iterator rpi; | 
| 1318 | for (rpi = rps.begin(); rpi != rps.end(); ++rpi) { | 
| 1319 | r1 = (*rpi).first; | 
| 1320 | r2 = (*rpi).second; | 
| 1321 | switch(rnemdFluxType_) { | 
| 1322 | case rnemdKE : | 
| 1323 | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) | 
| 1324 | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) | 
| 1325 | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); | 
| 1326 | break; | 
| 1327 | case rnemdPx : | 
| 1328 | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) | 
| 1329 | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); | 
| 1330 | break; | 
| 1331 | case rnemdPy : | 
| 1332 | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) | 
| 1333 | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); | 
| 1334 | break; | 
| 1335 | case rnemdPz : | 
| 1336 | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) | 
| 1337 | + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2); | 
| 1338 | default : | 
| 1339 | break; | 
| 1340 | } | 
| 1341 | if (diff < smallestDiff) { | 
| 1342 | smallestDiff = diff; | 
| 1343 | bestPair = *rpi; | 
| 1344 | } | 
| 1345 | } | 
| 1346 | #ifdef IS_MPI | 
| 1347 | if (worldRank == 0) { | 
| 1348 | #endif | 
| 1349 | // sprintf(painCave.errMsg, | 
| 1350 | //         "RNEMD: roots r1= %lf\tr2 = %lf\n", | 
| 1351 | //         bestPair.first, bestPair.second); | 
| 1352 | // painCave.isFatal = 0; | 
| 1353 | // painCave.severity = OPENMD_INFO; | 
| 1354 | // simError(); | 
| 1355 | #ifdef IS_MPI | 
| 1356 | } | 
| 1357 | #endif | 
| 1358 |  | 
| 1359 | switch(rnemdFluxType_) { | 
| 1360 | case rnemdKE : | 
| 1361 | x = bestPair.first; | 
| 1362 | y = bestPair.first; | 
| 1363 | z = bestPair.second; | 
| 1364 | break; | 
| 1365 | case rnemdPx : | 
| 1366 | x = c; | 
| 1367 | y = bestPair.first; | 
| 1368 | z = bestPair.second; | 
| 1369 | break; | 
| 1370 | case rnemdPy : | 
| 1371 | x = bestPair.first; | 
| 1372 | y = c; | 
| 1373 | z = bestPair.second; | 
| 1374 | break; | 
| 1375 | case rnemdPz : | 
| 1376 | x = bestPair.first; | 
| 1377 | y = bestPair.second; | 
| 1378 | z = c; | 
| 1379 | break; | 
| 1380 | default : | 
| 1381 | break; | 
| 1382 | } | 
| 1383 | vector<StuntDouble*>::iterator sdi; | 
| 1384 | Vector3d vel; | 
| 1385 | for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { | 
| 1386 | vel = (*sdi)->getVel(); | 
| 1387 | vel.x() *= x; | 
| 1388 | vel.y() *= y; | 
| 1389 | vel.z() *= z; | 
| 1390 | (*sdi)->setVel(vel); | 
| 1391 | } | 
| 1392 | //convert to hotBin coefficient | 
| 1393 | x = 1.0 + px * (1.0 - x); | 
| 1394 | y = 1.0 + py * (1.0 - y); | 
| 1395 | z = 1.0 + pz * (1.0 - z); | 
| 1396 | for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { | 
| 1397 | vel = (*sdi)->getVel(); | 
| 1398 | vel.x() *= x; | 
| 1399 | vel.y() *= y; | 
| 1400 | vel.z() *= z; | 
| 1401 | (*sdi)->setVel(vel); | 
| 1402 | } | 
| 1403 | successfulScale = true; | 
| 1404 | switch(rnemdFluxType_) { | 
| 1405 | case rnemdKE : | 
| 1406 | kineticExchange_ += kineticTarget_; | 
| 1407 | break; | 
| 1408 | case rnemdPx : | 
| 1409 | case rnemdPy : | 
| 1410 | case rnemdPz : | 
| 1411 | momentumExchange_ += momentumTarget_; | 
| 1412 | break; | 
| 1413 | default : | 
| 1414 | break; | 
| 1415 | } | 
| 1416 | } | 
| 1417 | } | 
| 1418 | if (successfulScale != true) { | 
| 1419 | sprintf(painCave.errMsg, | 
| 1420 | "RNEMD::doNIVS exchange NOT performed - roots that solve\n" | 
| 1421 | "\tthe constraint equations may not exist or there may be\n" | 
| 1422 | "\tno selected objects in one or both slabs.\n"); | 
| 1423 | painCave.isFatal = 0; | 
| 1424 | painCave.severity = OPENMD_INFO; | 
| 1425 | simError(); | 
| 1426 | failTrialCount_++; | 
| 1427 | } | 
| 1428 | } | 
| 1429 |  | 
| 1430 | void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) { | 
| 1431 | if (!doRNEMD_) return; | 
| 1432 | int selei; | 
| 1433 | int selej; | 
| 1434 |  | 
| 1435 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1436 | RealType time = currentSnap_->getTime(); | 
| 1437 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 1438 |  | 
| 1439 | StuntDouble* sd; | 
| 1440 |  | 
| 1441 | vector<StuntDouble*> hotBin, coldBin; | 
| 1442 |  | 
| 1443 | Vector3d Ph(V3Zero); | 
| 1444 | Vector3d Lh(V3Zero); | 
| 1445 | RealType Mh = 0.0; | 
| 1446 | Mat3x3d Ih(0.0); | 
| 1447 | RealType Kh = 0.0; | 
| 1448 | Vector3d Pc(V3Zero); | 
| 1449 | Vector3d Lc(V3Zero); | 
| 1450 | RealType Mc = 0.0; | 
| 1451 | Mat3x3d Ic(0.0); | 
| 1452 | RealType Kc = 0.0; | 
| 1453 |  | 
| 1454 | // Constraints can be on only the linear or angular momentum, but | 
| 1455 | // not both.  Usually, the user will specify which they want, but | 
| 1456 | // in case they don't, the use of periodic boundaries should make | 
| 1457 | // the choice for us. | 
| 1458 | bool doLinearPart = false; | 
| 1459 | bool doAngularPart = false; | 
| 1460 |  | 
| 1461 | switch (rnemdFluxType_) { | 
| 1462 | case rnemdPx: | 
| 1463 | case rnemdPy: | 
| 1464 | case rnemdPz: | 
| 1465 | case rnemdPvector: | 
| 1466 | case rnemdKePx: | 
| 1467 | case rnemdKePy: | 
| 1468 | case rnemdKePvector: | 
| 1469 | doLinearPart = true; | 
| 1470 | break; | 
| 1471 | case rnemdLx: | 
| 1472 | case rnemdLy: | 
| 1473 | case rnemdLz: | 
| 1474 | case rnemdLvector: | 
| 1475 | case rnemdKeLx: | 
| 1476 | case rnemdKeLy: | 
| 1477 | case rnemdKeLz: | 
| 1478 | case rnemdKeLvector: | 
| 1479 | doAngularPart = true; | 
| 1480 | break; | 
| 1481 | case rnemdKE: | 
| 1482 | case rnemdRotKE: | 
| 1483 | case rnemdFullKE: | 
| 1484 | default: | 
| 1485 | if (usePeriodicBoundaryConditions_) | 
| 1486 | doLinearPart = true; | 
| 1487 | else | 
| 1488 | doAngularPart = true; | 
| 1489 | break; | 
| 1490 | } | 
| 1491 |  | 
| 1492 | for (sd = smanA.beginSelected(selei); sd != NULL; | 
| 1493 | sd = smanA.nextSelected(selei)) { | 
| 1494 |  | 
| 1495 | Vector3d pos = sd->getPos(); | 
| 1496 |  | 
| 1497 | // wrap the stuntdouble's position back into the box: | 
| 1498 |  | 
| 1499 | if (usePeriodicBoundaryConditions_) | 
| 1500 | currentSnap_->wrapVector(pos); | 
| 1501 |  | 
| 1502 | RealType mass = sd->getMass(); | 
| 1503 | Vector3d vel = sd->getVel(); | 
| 1504 | Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 1505 | RealType r2; | 
| 1506 |  | 
| 1507 | hotBin.push_back(sd); | 
| 1508 | Ph += mass * vel; | 
| 1509 | Mh += mass; | 
| 1510 | Kh += mass * vel.lengthSquare(); | 
| 1511 | Lh += mass * cross(rPos, vel); | 
| 1512 | Ih -= outProduct(rPos, rPos) * mass; | 
| 1513 | r2 = rPos.lengthSquare(); | 
| 1514 | Ih(0, 0) += mass * r2; | 
| 1515 | Ih(1, 1) += mass * r2; | 
| 1516 | Ih(2, 2) += mass * r2; | 
| 1517 |  | 
| 1518 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1519 | if (sd->isDirectional()) { | 
| 1520 | Vector3d angMom = sd->getJ(); | 
| 1521 | Mat3x3d I = sd->getI(); | 
| 1522 | if (sd->isLinear()) { | 
| 1523 | int i = sd->linearAxis(); | 
| 1524 | int j = (i + 1) % 3; | 
| 1525 | int k = (i + 2) % 3; | 
| 1526 | Kh += angMom[j] * angMom[j] / I(j, j) + | 
| 1527 | angMom[k] * angMom[k] / I(k, k); | 
| 1528 | } else { | 
| 1529 | Kh += angMom[0] * angMom[0] / I(0, 0) + | 
| 1530 | angMom[1] * angMom[1] / I(1, 1) + | 
| 1531 | angMom[2] * angMom[2] / I(2, 2); | 
| 1532 | } | 
| 1533 | } | 
| 1534 | } | 
| 1535 | } | 
| 1536 | for (sd = smanB.beginSelected(selej); sd != NULL; | 
| 1537 | sd = smanB.nextSelected(selej)) { | 
| 1538 |  | 
| 1539 | Vector3d pos = sd->getPos(); | 
| 1540 |  | 
| 1541 | // wrap the stuntdouble's position back into the box: | 
| 1542 |  | 
| 1543 | if (usePeriodicBoundaryConditions_) | 
| 1544 | currentSnap_->wrapVector(pos); | 
| 1545 |  | 
| 1546 | RealType mass = sd->getMass(); | 
| 1547 | Vector3d vel = sd->getVel(); | 
| 1548 | Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 1549 | RealType r2; | 
| 1550 |  | 
| 1551 | coldBin.push_back(sd); | 
| 1552 | Pc += mass * vel; | 
| 1553 | Mc += mass; | 
| 1554 | Kc += mass * vel.lengthSquare(); | 
| 1555 | Lc += mass * cross(rPos, vel); | 
| 1556 | Ic -= outProduct(rPos, rPos) * mass; | 
| 1557 | r2 = rPos.lengthSquare(); | 
| 1558 | Ic(0, 0) += mass * r2; | 
| 1559 | Ic(1, 1) += mass * r2; | 
| 1560 | Ic(2, 2) += mass * r2; | 
| 1561 |  | 
| 1562 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1563 | if (sd->isDirectional()) { | 
| 1564 | Vector3d angMom = sd->getJ(); | 
| 1565 | Mat3x3d I = sd->getI(); | 
| 1566 | if (sd->isLinear()) { | 
| 1567 | int i = sd->linearAxis(); | 
| 1568 | int j = (i + 1) % 3; | 
| 1569 | int k = (i + 2) % 3; | 
| 1570 | Kc += angMom[j] * angMom[j] / I(j, j) + | 
| 1571 | angMom[k] * angMom[k] / I(k, k); | 
| 1572 | } else { | 
| 1573 | Kc += angMom[0] * angMom[0] / I(0, 0) + | 
| 1574 | angMom[1] * angMom[1] / I(1, 1) + | 
| 1575 | angMom[2] * angMom[2] / I(2, 2); | 
| 1576 | } | 
| 1577 | } | 
| 1578 | } | 
| 1579 | } | 
| 1580 |  | 
| 1581 | Kh *= 0.5; | 
| 1582 | Kc *= 0.5; | 
| 1583 |  | 
| 1584 | #ifdef IS_MPI | 
| 1585 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1586 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1587 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1588 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1589 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); | 
| 1590 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); | 
| 1591 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); | 
| 1592 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); | 
| 1593 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9, | 
| 1594 | MPI::REALTYPE, MPI::SUM); | 
| 1595 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9, | 
| 1596 | MPI::REALTYPE, MPI::SUM); | 
| 1597 | #endif | 
| 1598 |  | 
| 1599 |  | 
| 1600 | Vector3d ac, acrec, bc, bcrec; | 
| 1601 | Vector3d ah, ahrec, bh, bhrec; | 
| 1602 |  | 
| 1603 | bool successfulExchange = false; | 
| 1604 | if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty | 
| 1605 | Vector3d vc = Pc / Mc; | 
| 1606 | ac = -momentumTarget_ / Mc + vc; | 
| 1607 | acrec = -momentumTarget_ / Mc; | 
| 1608 |  | 
| 1609 | // We now need the inverse of the inertia tensor to calculate the | 
| 1610 | // angular velocity of the cold slab; | 
| 1611 | Mat3x3d Ici = Ic.inverse(); | 
| 1612 | Vector3d omegac = Ici * Lc; | 
| 1613 | bc  = -(Ici * angularMomentumTarget_) + omegac; | 
| 1614 | bcrec = bc - omegac; | 
| 1615 |  | 
| 1616 | RealType cNumerator = Kc - kineticTarget_; | 
| 1617 | if (doLinearPart) | 
| 1618 | cNumerator -= 0.5 * Mc * ac.lengthSquare(); | 
| 1619 |  | 
| 1620 | if (doAngularPart) | 
| 1621 | cNumerator -= 0.5 * ( dot(bc, Ic * bc)); | 
| 1622 |  | 
| 1623 | if (cNumerator > 0.0) { | 
| 1624 |  | 
| 1625 | RealType cDenominator = Kc; | 
| 1626 |  | 
| 1627 | if (doLinearPart) | 
| 1628 | cDenominator -= 0.5 * Mc * vc.lengthSquare(); | 
| 1629 |  | 
| 1630 | if (doAngularPart) | 
| 1631 | cDenominator -= 0.5*(dot(omegac, Ic * omegac)); | 
| 1632 |  | 
| 1633 | if (cDenominator > 0.0) { | 
| 1634 | RealType c = sqrt(cNumerator / cDenominator); | 
| 1635 | if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients | 
| 1636 |  | 
| 1637 | Vector3d vh = Ph / Mh; | 
| 1638 | ah = momentumTarget_ / Mh + vh; | 
| 1639 | ahrec = momentumTarget_ / Mh; | 
| 1640 |  | 
| 1641 | // We now need the inverse of the inertia tensor to | 
| 1642 | // calculate the angular velocity of the hot slab; | 
| 1643 | Mat3x3d Ihi = Ih.inverse(); | 
| 1644 | Vector3d omegah = Ihi * Lh; | 
| 1645 | bh  = (Ihi * angularMomentumTarget_) + omegah; | 
| 1646 | bhrec = bh - omegah; | 
| 1647 |  | 
| 1648 | RealType hNumerator = Kh + kineticTarget_; | 
| 1649 | if (doLinearPart) | 
| 1650 | hNumerator -= 0.5 * Mh * ah.lengthSquare(); | 
| 1651 |  | 
| 1652 | if (doAngularPart) | 
| 1653 | hNumerator -= 0.5 * ( dot(bh, Ih * bh)); | 
| 1654 |  | 
| 1655 | if (hNumerator > 0.0) { | 
| 1656 |  | 
| 1657 | RealType hDenominator = Kh; | 
| 1658 | if (doLinearPart) | 
| 1659 | hDenominator -= 0.5 * Mh * vh.lengthSquare(); | 
| 1660 | if (doAngularPart) | 
| 1661 | hDenominator -= 0.5*(dot(omegah, Ih * omegah)); | 
| 1662 |  | 
| 1663 | if (hDenominator > 0.0) { | 
| 1664 | RealType h = sqrt(hNumerator / hDenominator); | 
| 1665 | if ((h > 0.9) && (h < 1.1)) { | 
| 1666 |  | 
| 1667 | vector<StuntDouble*>::iterator sdi; | 
| 1668 | Vector3d vel; | 
| 1669 | Vector3d rPos; | 
| 1670 |  | 
| 1671 | for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { | 
| 1672 | //vel = (*sdi)->getVel(); | 
| 1673 | rPos = (*sdi)->getPos() - coordinateOrigin_; | 
| 1674 | if (doLinearPart) | 
| 1675 | vel = ((*sdi)->getVel() - vc) * c + ac; | 
| 1676 | if (doAngularPart) | 
| 1677 | vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos); | 
| 1678 |  | 
| 1679 | (*sdi)->setVel(vel); | 
| 1680 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1681 | if ((*sdi)->isDirectional()) { | 
| 1682 | Vector3d angMom = (*sdi)->getJ() * c; | 
| 1683 | (*sdi)->setJ(angMom); | 
| 1684 | } | 
| 1685 | } | 
| 1686 | } | 
| 1687 | for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { | 
| 1688 | //vel = (*sdi)->getVel(); | 
| 1689 | rPos = (*sdi)->getPos() - coordinateOrigin_; | 
| 1690 | if (doLinearPart) | 
| 1691 | vel = ((*sdi)->getVel() - vh) * h + ah; | 
| 1692 | if (doAngularPart) | 
| 1693 | vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos); | 
| 1694 |  | 
| 1695 | (*sdi)->setVel(vel); | 
| 1696 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1697 | if ((*sdi)->isDirectional()) { | 
| 1698 | Vector3d angMom = (*sdi)->getJ() * h; | 
| 1699 | (*sdi)->setJ(angMom); | 
| 1700 | } | 
| 1701 | } | 
| 1702 | } | 
| 1703 | successfulExchange = true; | 
| 1704 | kineticExchange_ += kineticTarget_; | 
| 1705 | momentumExchange_ += momentumTarget_; | 
| 1706 | angularMomentumExchange_ += angularMomentumTarget_; | 
| 1707 | } | 
| 1708 | } | 
| 1709 | } | 
| 1710 | } | 
| 1711 | } | 
| 1712 | } | 
| 1713 | } | 
| 1714 | if (successfulExchange != true) { | 
| 1715 | sprintf(painCave.errMsg, | 
| 1716 | "RNEMD::doVSS exchange NOT performed - roots that solve\n" | 
| 1717 | "\tthe constraint equations may not exist or there may be\n" | 
| 1718 | "\tno selected objects in one or both slabs.\n"); | 
| 1719 | painCave.isFatal = 0; | 
| 1720 | painCave.severity = OPENMD_INFO; | 
| 1721 | simError(); | 
| 1722 | failTrialCount_++; | 
| 1723 | } | 
| 1724 | } | 
| 1725 |  | 
| 1726 | RealType RNEMD::getDividingArea() { | 
| 1727 |  | 
| 1728 | if (hasDividingArea_) return dividingArea_; | 
| 1729 |  | 
| 1730 | RealType areaA, areaB; | 
| 1731 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1732 |  | 
| 1733 | if (hasSelectionA_) { | 
| 1734 |  | 
| 1735 | if (evaluatorA_.hasSurfaceArea()) | 
| 1736 | areaA = evaluatorA_.getSurfaceArea(); | 
| 1737 | else { | 
| 1738 |  | 
| 1739 | cerr << "selection A did not have surface area, recomputing\n"; | 
| 1740 | int isd; | 
| 1741 | StuntDouble* sd; | 
| 1742 | vector<StuntDouble*> aSites; | 
| 1743 | seleManA_.setSelectionSet(evaluatorA_.evaluate()); | 
| 1744 | for (sd = seleManA_.beginSelected(isd); sd != NULL; | 
| 1745 | sd = seleManA_.nextSelected(isd)) { | 
| 1746 | aSites.push_back(sd); | 
| 1747 | } | 
| 1748 | #if defined(HAVE_QHULL) | 
| 1749 | ConvexHull* surfaceMeshA = new ConvexHull(); | 
| 1750 | surfaceMeshA->computeHull(aSites); | 
| 1751 | areaA = surfaceMeshA->getArea(); | 
| 1752 | delete surfaceMeshA; | 
| 1753 | #else | 
| 1754 | sprintf( painCave.errMsg, | 
| 1755 | "RNEMD::getDividingArea : Hull calculation is not possible\n" | 
| 1756 | "\twithout libqhull. Please rebuild OpenMD with qhull enabled."); | 
| 1757 | painCave.severity = OPENMD_ERROR; | 
| 1758 | painCave.isFatal = 1; | 
| 1759 | simError(); | 
| 1760 | #endif | 
| 1761 | } | 
| 1762 |  | 
| 1763 | } else { | 
| 1764 | if (usePeriodicBoundaryConditions_) { | 
| 1765 | // in periodic boundaries, the surface area is twice the x-y | 
| 1766 | // area of the current box: | 
| 1767 | areaA = 2.0 * snap->getXYarea(); | 
| 1768 | } else { | 
| 1769 | // in non-periodic simulations, without explicitly setting | 
| 1770 | // selections, the sphere radius sets the surface area of the | 
| 1771 | // dividing surface: | 
| 1772 | areaA = 4.0 * M_PI * pow(sphereARadius_, 2); | 
| 1773 | } | 
| 1774 | } | 
| 1775 |  | 
| 1776 | if (hasSelectionB_) { | 
| 1777 | if (evaluatorB_.hasSurfaceArea()) | 
| 1778 | areaB = evaluatorB_.getSurfaceArea(); | 
| 1779 | else { | 
| 1780 | cerr << "selection B did not have surface area, recomputing\n"; | 
| 1781 |  | 
| 1782 | int isd; | 
| 1783 | StuntDouble* sd; | 
| 1784 | vector<StuntDouble*> bSites; | 
| 1785 | seleManB_.setSelectionSet(evaluatorB_.evaluate()); | 
| 1786 | for (sd = seleManB_.beginSelected(isd); sd != NULL; | 
| 1787 | sd = seleManB_.nextSelected(isd)) { | 
| 1788 | bSites.push_back(sd); | 
| 1789 | } | 
| 1790 |  | 
| 1791 | #if defined(HAVE_QHULL) | 
| 1792 | ConvexHull* surfaceMeshB = new ConvexHull(); | 
| 1793 | surfaceMeshB->computeHull(bSites); | 
| 1794 | areaB = surfaceMeshB->getArea(); | 
| 1795 | delete surfaceMeshB; | 
| 1796 | #else | 
| 1797 | sprintf( painCave.errMsg, | 
| 1798 | "RNEMD::getDividingArea : Hull calculation is not possible\n" | 
| 1799 | "\twithout libqhull. Please rebuild OpenMD with qhull enabled."); | 
| 1800 | painCave.severity = OPENMD_ERROR; | 
| 1801 | painCave.isFatal = 1; | 
| 1802 | simError(); | 
| 1803 | #endif | 
| 1804 | } | 
| 1805 |  | 
| 1806 | } else { | 
| 1807 | if (usePeriodicBoundaryConditions_) { | 
| 1808 | // in periodic boundaries, the surface area is twice the x-y | 
| 1809 | // area of the current box: | 
| 1810 | areaB = 2.0 * snap->getXYarea(); | 
| 1811 | } else { | 
| 1812 | // in non-periodic simulations, without explicitly setting | 
| 1813 | // selections, but if a sphereBradius has been set, just use that: | 
| 1814 | areaB = 4.0 * M_PI * pow(sphereBRadius_, 2); | 
| 1815 | } | 
| 1816 | } | 
| 1817 |  | 
| 1818 | dividingArea_ = min(areaA, areaB); | 
| 1819 | hasDividingArea_ = true; | 
| 1820 | return dividingArea_; | 
| 1821 | } | 
| 1822 |  | 
| 1823 | void RNEMD::doRNEMD() { | 
| 1824 | if (!doRNEMD_) return; | 
| 1825 | trialCount_++; | 
| 1826 |  | 
| 1827 | // object evaluator: | 
| 1828 | evaluator_.loadScriptString(rnemdObjectSelection_); | 
| 1829 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1830 |  | 
| 1831 | evaluatorA_.loadScriptString(selectionA_); | 
| 1832 | evaluatorB_.loadScriptString(selectionB_); | 
| 1833 |  | 
| 1834 | seleManA_.setSelectionSet(evaluatorA_.evaluate()); | 
| 1835 | seleManB_.setSelectionSet(evaluatorB_.evaluate()); | 
| 1836 |  | 
| 1837 | commonA_ = seleManA_ & seleMan_; | 
| 1838 | commonB_ = seleManB_ & seleMan_; | 
| 1839 |  | 
| 1840 | // Target exchange quantities (in each exchange) = dividingArea * dt * flux | 
| 1841 | // dt = exchange time interval | 
| 1842 | // flux = target flux | 
| 1843 | // dividingArea = smallest dividing surface between the two regions | 
| 1844 |  | 
| 1845 | hasDividingArea_ = false; | 
| 1846 | RealType area = getDividingArea(); | 
| 1847 |  | 
| 1848 | kineticTarget_ = kineticFlux_ * exchangeTime_ * area; | 
| 1849 | momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area; | 
| 1850 | angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area; | 
| 1851 |  | 
| 1852 | switch(rnemdMethod_) { | 
| 1853 | case rnemdSwap: | 
| 1854 | doSwap(commonA_, commonB_); | 
| 1855 | break; | 
| 1856 | case rnemdNIVS: | 
| 1857 | doNIVS(commonA_, commonB_); | 
| 1858 | break; | 
| 1859 | case rnemdVSS: | 
| 1860 | doVSS(commonA_, commonB_); | 
| 1861 | break; | 
| 1862 | case rnemdUnkownMethod: | 
| 1863 | default : | 
| 1864 | break; | 
| 1865 | } | 
| 1866 | } | 
| 1867 |  | 
| 1868 | void RNEMD::collectData() { | 
| 1869 | if (!doRNEMD_) return; | 
| 1870 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1871 |  | 
| 1872 | // collectData can be called more frequently than the doRNEMD, so use the | 
| 1873 | // computed area from the last exchange time: | 
| 1874 | RealType area = getDividingArea(); | 
| 1875 | areaAccumulator_->add(area); | 
| 1876 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 1877 | Vector3d u = angularMomentumFluxVector_; | 
| 1878 | u.normalize(); | 
| 1879 |  | 
| 1880 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1881 |  | 
| 1882 | int selei(0); | 
| 1883 | StuntDouble* sd; | 
| 1884 | int binNo; | 
| 1885 | RealType mass; | 
| 1886 | Vector3d vel; | 
| 1887 | Vector3d rPos; | 
| 1888 | RealType KE; | 
| 1889 | Vector3d L; | 
| 1890 | Mat3x3d I; | 
| 1891 | RealType r2; | 
| 1892 |  | 
| 1893 | vector<RealType> binMass(nBins_, 0.0); | 
| 1894 | vector<Vector3d> binP(nBins_, V3Zero); | 
| 1895 | vector<RealType> binOmega(nBins_, 0.0); | 
| 1896 | vector<Vector3d> binL(nBins_, V3Zero); | 
| 1897 | vector<Mat3x3d>  binI(nBins_); | 
| 1898 | vector<RealType> binKE(nBins_, 0.0); | 
| 1899 | vector<int> binDOF(nBins_, 0); | 
| 1900 | vector<int> binCount(nBins_, 0); | 
| 1901 |  | 
| 1902 | // alternative approach, track all molecules instead of only those | 
| 1903 | // selected for scaling/swapping: | 
| 1904 | /* | 
| 1905 | SimInfo::MoleculeIterator miter; | 
| 1906 | vector<StuntDouble*>::iterator iiter; | 
| 1907 | Molecule* mol; | 
| 1908 | StuntDouble* sd; | 
| 1909 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 1910 | mol = info_->nextMolecule(miter)) | 
| 1911 | sd is essentially sd | 
| 1912 | for (sd = mol->beginIntegrableObject(iiter); | 
| 1913 | sd != NULL; | 
| 1914 | sd = mol->nextIntegrableObject(iiter)) | 
| 1915 | */ | 
| 1916 |  | 
| 1917 | for (sd = seleMan_.beginSelected(selei); sd != NULL; | 
| 1918 | sd = seleMan_.nextSelected(selei)) { | 
| 1919 |  | 
| 1920 | Vector3d pos = sd->getPos(); | 
| 1921 |  | 
| 1922 | // wrap the stuntdouble's position back into the box: | 
| 1923 |  | 
| 1924 | if (usePeriodicBoundaryConditions_) { | 
| 1925 | currentSnap_->wrapVector(pos); | 
| 1926 | // which bin is this stuntdouble in? | 
| 1927 | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] | 
| 1928 | // Shift molecules by half a box to have bins start at 0 | 
| 1929 | // The modulo operator is used to wrap the case when we are | 
| 1930 | // beyond the end of the bins back to the beginning. | 
| 1931 | binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; | 
| 1932 | } else { | 
| 1933 | Vector3d rPos = pos - coordinateOrigin_; | 
| 1934 | binNo = int(rPos.length() / binWidth_); | 
| 1935 | } | 
| 1936 |  | 
| 1937 | mass = sd->getMass(); | 
| 1938 | vel = sd->getVel(); | 
| 1939 | rPos = sd->getPos() - coordinateOrigin_; | 
| 1940 | KE = 0.5 * mass * vel.lengthSquare(); | 
| 1941 | L = mass * cross(rPos, vel); | 
| 1942 | I = outProduct(rPos, rPos) * mass; | 
| 1943 | r2 = rPos.lengthSquare(); | 
| 1944 | I(0, 0) += mass * r2; | 
| 1945 | I(1, 1) += mass * r2; | 
| 1946 | I(2, 2) += mass * r2; | 
| 1947 |  | 
| 1948 | // Project the relative position onto a plane perpendicular to | 
| 1949 | // the angularMomentumFluxVector: | 
| 1950 | // Vector3d rProj = rPos - dot(rPos, u) * u; | 
| 1951 | // Project the velocity onto a plane perpendicular to the | 
| 1952 | // angularMomentumFluxVector: | 
| 1953 | // Vector3d vProj = vel  - dot(vel, u) * u; | 
| 1954 | // Compute angular velocity vector (should be nearly parallel to | 
| 1955 | // angularMomentumFluxVector | 
| 1956 | // Vector3d aVel = cross(rProj, vProj); | 
| 1957 |  | 
| 1958 | if (binNo >= 0 && binNo < nBins_)  { | 
| 1959 | binCount[binNo]++; | 
| 1960 | binMass[binNo] += mass; | 
| 1961 | binP[binNo] += mass*vel; | 
| 1962 | binKE[binNo] += KE; | 
| 1963 | binI[binNo] += I; | 
| 1964 | binL[binNo] += L; | 
| 1965 | binDOF[binNo] += 3; | 
| 1966 |  | 
| 1967 | if (sd->isDirectional()) { | 
| 1968 | Vector3d angMom = sd->getJ(); | 
| 1969 | Mat3x3d Ia = sd->getI(); | 
| 1970 | if (sd->isLinear()) { | 
| 1971 | int i = sd->linearAxis(); | 
| 1972 | int j = (i + 1) % 3; | 
| 1973 | int k = (i + 2) % 3; | 
| 1974 | binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) + | 
| 1975 | angMom[k] * angMom[k] / Ia(k, k)); | 
| 1976 | binDOF[binNo] += 2; | 
| 1977 | } else { | 
| 1978 | binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) + | 
| 1979 | angMom[1] * angMom[1] / Ia(1, 1) + | 
| 1980 | angMom[2] * angMom[2] / Ia(2, 2)); | 
| 1981 | binDOF[binNo] += 3; | 
| 1982 | } | 
| 1983 | } | 
| 1984 | } | 
| 1985 | } | 
| 1986 |  | 
| 1987 | #ifdef IS_MPI | 
| 1988 |  | 
| 1989 | for (int i = 0; i < nBins_; i++) { | 
| 1990 |  | 
| 1991 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[i], | 
| 1992 | 1, MPI::INT, MPI::SUM); | 
| 1993 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[i], | 
| 1994 | 1, MPI::REALTYPE, MPI::SUM); | 
| 1995 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binP[i], | 
| 1996 | 3, MPI::REALTYPE, MPI::SUM); | 
| 1997 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binL[i], | 
| 1998 | 3, MPI::REALTYPE, MPI::SUM); | 
| 1999 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binI[i], | 
| 2000 | 9, MPI::REALTYPE, MPI::SUM); | 
| 2001 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[i], | 
| 2002 | 1, MPI::REALTYPE, MPI::SUM); | 
| 2003 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[i], | 
| 2004 | 1, MPI::INT, MPI::SUM); | 
| 2005 | //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmega[i], | 
| 2006 | //                          1, MPI::REALTYPE, MPI::SUM); | 
| 2007 | } | 
| 2008 |  | 
| 2009 | #endif | 
| 2010 |  | 
| 2011 | Vector3d omega; | 
| 2012 | RealType den; | 
| 2013 | RealType temp; | 
| 2014 | RealType z; | 
| 2015 | RealType r; | 
| 2016 | for (int i = 0; i < nBins_; i++) { | 
| 2017 | if (usePeriodicBoundaryConditions_) { | 
| 2018 | z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); | 
| 2019 | den = binMass[i] * nBins_ * PhysicalConstants::densityConvert | 
| 2020 | / currentSnap_->getVolume() ; | 
| 2021 | } else { | 
| 2022 | r = (((RealType)i + 0.5) * binWidth_); | 
| 2023 | RealType rinner = (RealType)i * binWidth_; | 
| 2024 | RealType router = (RealType)(i+1) * binWidth_; | 
| 2025 | den = binMass[i] * 3.0 * PhysicalConstants::densityConvert | 
| 2026 | / (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); | 
| 2027 | } | 
| 2028 | vel = binP[i] / binMass[i]; | 
| 2029 |  | 
| 2030 | omega = binI[i].inverse() * binL[i]; | 
| 2031 |  | 
| 2032 | // omega = binOmega[i] / binCount[i]; | 
| 2033 |  | 
| 2034 | if (binCount[i] > 0) { | 
| 2035 | // only add values if there are things to add | 
| 2036 | temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * | 
| 2037 | PhysicalConstants::energyConvert); | 
| 2038 |  | 
| 2039 | for (unsigned int j = 0; j < outputMask_.size(); ++j) { | 
| 2040 | if(outputMask_[j]) { | 
| 2041 | switch(j) { | 
| 2042 | case Z: | 
| 2043 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); | 
| 2044 | break; | 
| 2045 | case R: | 
| 2046 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r); | 
| 2047 | break; | 
| 2048 | case TEMPERATURE: | 
| 2049 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); | 
| 2050 | break; | 
| 2051 | case VELOCITY: | 
| 2052 | dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); | 
| 2053 | break; | 
| 2054 | case ANGULARVELOCITY: | 
| 2055 | dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega); | 
| 2056 | break; | 
| 2057 | case DENSITY: | 
| 2058 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); | 
| 2059 | break; | 
| 2060 | } | 
| 2061 | } | 
| 2062 | } | 
| 2063 | } | 
| 2064 | } | 
| 2065 | hasData_ = true; | 
| 2066 | } | 
| 2067 |  | 
| 2068 | void RNEMD::getStarted() { | 
| 2069 | if (!doRNEMD_) return; | 
| 2070 | hasDividingArea_ = false; | 
| 2071 | collectData(); | 
| 2072 | writeOutputFile(); | 
| 2073 | } | 
| 2074 |  | 
| 2075 | void RNEMD::parseOutputFileFormat(const std::string& format) { | 
| 2076 | if (!doRNEMD_) return; | 
| 2077 | StringTokenizer tokenizer(format, " ,;|\t\n\r"); | 
| 2078 |  | 
| 2079 | while(tokenizer.hasMoreTokens()) { | 
| 2080 | std::string token(tokenizer.nextToken()); | 
| 2081 | toUpper(token); | 
| 2082 | OutputMapType::iterator i = outputMap_.find(token); | 
| 2083 | if (i != outputMap_.end()) { | 
| 2084 | outputMask_.set(i->second); | 
| 2085 | } else { | 
| 2086 | sprintf( painCave.errMsg, | 
| 2087 | "RNEMD::parseOutputFileFormat: %s is not a recognized\n" | 
| 2088 | "\toutputFileFormat keyword.\n", token.c_str() ); | 
| 2089 | painCave.isFatal = 0; | 
| 2090 | painCave.severity = OPENMD_ERROR; | 
| 2091 | simError(); | 
| 2092 | } | 
| 2093 | } | 
| 2094 | } | 
| 2095 |  | 
| 2096 | void RNEMD::writeOutputFile() { | 
| 2097 | if (!doRNEMD_) return; | 
| 2098 | if (!hasData_) return; | 
| 2099 |  | 
| 2100 | #ifdef IS_MPI | 
| 2101 | // If we're the root node, should we print out the results | 
| 2102 | int worldRank = MPI::COMM_WORLD.Get_rank(); | 
| 2103 | if (worldRank == 0) { | 
| 2104 | #endif | 
| 2105 | rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc ); | 
| 2106 |  | 
| 2107 | if( !rnemdFile_ ){ | 
| 2108 | sprintf( painCave.errMsg, | 
| 2109 | "Could not open \"%s\" for RNEMD output.\n", | 
| 2110 | rnemdFileName_.c_str()); | 
| 2111 | painCave.isFatal = 1; | 
| 2112 | simError(); | 
| 2113 | } | 
| 2114 |  | 
| 2115 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 2116 |  | 
| 2117 | RealType time = currentSnap_->getTime(); | 
| 2118 | RealType avgArea; | 
| 2119 | areaAccumulator_->getAverage(avgArea); | 
| 2120 |  | 
| 2121 | RealType Jz(0.0); | 
| 2122 | Vector3d JzP(V3Zero); | 
| 2123 | Vector3d JzL(V3Zero); | 
| 2124 | if (time >= info_->getSimParams()->getDt()) { | 
| 2125 | Jz = kineticExchange_ / (time * avgArea) | 
| 2126 | / PhysicalConstants::energyConvert; | 
| 2127 | JzP = momentumExchange_ / (time * avgArea); | 
| 2128 | JzL = angularMomentumExchange_ / (time * avgArea); | 
| 2129 | } | 
| 2130 |  | 
| 2131 | rnemdFile_ << "#######################################################\n"; | 
| 2132 | rnemdFile_ << "# RNEMD {\n"; | 
| 2133 |  | 
| 2134 | map<string, RNEMDMethod>::iterator mi; | 
| 2135 | for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) { | 
| 2136 | if ( (*mi).second == rnemdMethod_) | 
| 2137 | rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n"; | 
| 2138 | } | 
| 2139 | map<string, RNEMDFluxType>::iterator fi; | 
| 2140 | for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) { | 
| 2141 | if ( (*fi).second == rnemdFluxType_) | 
| 2142 | rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n"; | 
| 2143 | } | 
| 2144 |  | 
| 2145 | rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n"; | 
| 2146 |  | 
| 2147 | rnemdFile_ << "#    objectSelection = \"" | 
| 2148 | << rnemdObjectSelection_ << "\";\n"; | 
| 2149 | rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n"; | 
| 2150 | rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n"; | 
| 2151 | rnemdFile_ << "# }\n"; | 
| 2152 | rnemdFile_ << "#######################################################\n"; | 
| 2153 | rnemdFile_ << "# RNEMD report:\n"; | 
| 2154 | rnemdFile_ << "#      running time = " << time << " fs\n"; | 
| 2155 | rnemdFile_ << "# Target flux:\n"; | 
| 2156 | rnemdFile_ << "#           kinetic = " | 
| 2157 | << kineticFlux_ / PhysicalConstants::energyConvert | 
| 2158 | << " (kcal/mol/A^2/fs)\n"; | 
| 2159 | rnemdFile_ << "#          momentum = " << momentumFluxVector_ | 
| 2160 | << " (amu/A/fs^2)\n"; | 
| 2161 | rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_ | 
| 2162 | << " (amu/A^2/fs^2)\n"; | 
| 2163 | rnemdFile_ << "# Target one-time exchanges:\n"; | 
| 2164 | rnemdFile_ << "#          kinetic = " | 
| 2165 | << kineticTarget_ / PhysicalConstants::energyConvert | 
| 2166 | << " (kcal/mol)\n"; | 
| 2167 | rnemdFile_ << "#          momentum = " << momentumTarget_ | 
| 2168 | << " (amu*A/fs)\n"; | 
| 2169 | rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_ | 
| 2170 | << " (amu*A^2/fs)\n"; | 
| 2171 | rnemdFile_ << "# Actual exchange totals:\n"; | 
| 2172 | rnemdFile_ << "#          kinetic = " | 
| 2173 | << kineticExchange_ / PhysicalConstants::energyConvert | 
| 2174 | << " (kcal/mol)\n"; | 
| 2175 | rnemdFile_ << "#          momentum = " << momentumExchange_ | 
| 2176 | << " (amu*A/fs)\n"; | 
| 2177 | rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_ | 
| 2178 | << " (amu*A^2/fs)\n"; | 
| 2179 | rnemdFile_ << "# Actual flux:\n"; | 
| 2180 | rnemdFile_ << "#          kinetic = " << Jz | 
| 2181 | << " (kcal/mol/A^2/fs)\n"; | 
| 2182 | rnemdFile_ << "#          momentum = " << JzP | 
| 2183 | << " (amu/A/fs^2)\n"; | 
| 2184 | rnemdFile_ << "#  angular momentum = " << JzL | 
| 2185 | << " (amu/A^2/fs^2)\n"; | 
| 2186 | rnemdFile_ << "# Exchange statistics:\n"; | 
| 2187 | rnemdFile_ << "#               attempted = " << trialCount_ << "\n"; | 
| 2188 | rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n"; | 
| 2189 | if (rnemdMethod_ == rnemdNIVS) { | 
| 2190 | rnemdFile_ << "#  NIVS root-check errors = " | 
| 2191 | << failRootCount_ << "\n"; | 
| 2192 | } | 
| 2193 | rnemdFile_ << "#######################################################\n"; | 
| 2194 |  | 
| 2195 |  | 
| 2196 |  | 
| 2197 | //write title | 
| 2198 | rnemdFile_ << "#"; | 
| 2199 | for (unsigned int i = 0; i < outputMask_.size(); ++i) { | 
| 2200 | if (outputMask_[i]) { | 
| 2201 | rnemdFile_ << "\t" << data_[i].title << | 
| 2202 | "(" << data_[i].units << ")"; | 
| 2203 | // add some extra tabs for column alignment | 
| 2204 | if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t"; | 
| 2205 | } | 
| 2206 | } | 
| 2207 | rnemdFile_ << std::endl; | 
| 2208 |  | 
| 2209 | rnemdFile_.precision(8); | 
| 2210 |  | 
| 2211 | for (int j = 0; j < nBins_; j++) { | 
| 2212 |  | 
| 2213 | for (unsigned int i = 0; i < outputMask_.size(); ++i) { | 
| 2214 | if (outputMask_[i]) { | 
| 2215 | if (data_[i].dataType == "RealType") | 
| 2216 | writeReal(i,j); | 
| 2217 | else if (data_[i].dataType == "Vector3d") | 
| 2218 | writeVector(i,j); | 
| 2219 | else { | 
| 2220 | sprintf( painCave.errMsg, | 
| 2221 | "RNEMD found an unknown data type for: %s ", | 
| 2222 | data_[i].title.c_str()); | 
| 2223 | painCave.isFatal = 1; | 
| 2224 | simError(); | 
| 2225 | } | 
| 2226 | } | 
| 2227 | } | 
| 2228 | rnemdFile_ << std::endl; | 
| 2229 |  | 
| 2230 | } | 
| 2231 |  | 
| 2232 | rnemdFile_ << "#######################################################\n"; | 
| 2233 | rnemdFile_ << "# Standard Deviations in those quantities follow:\n"; | 
| 2234 | rnemdFile_ << "#######################################################\n"; | 
| 2235 |  | 
| 2236 |  | 
| 2237 | for (int j = 0; j < nBins_; j++) { | 
| 2238 | rnemdFile_ << "#"; | 
| 2239 | for (unsigned int i = 0; i < outputMask_.size(); ++i) { | 
| 2240 | if (outputMask_[i]) { | 
| 2241 | if (data_[i].dataType == "RealType") | 
| 2242 | writeRealStdDev(i,j); | 
| 2243 | else if (data_[i].dataType == "Vector3d") | 
| 2244 | writeVectorStdDev(i,j); | 
| 2245 | else { | 
| 2246 | sprintf( painCave.errMsg, | 
| 2247 | "RNEMD found an unknown data type for: %s ", | 
| 2248 | data_[i].title.c_str()); | 
| 2249 | painCave.isFatal = 1; | 
| 2250 | simError(); | 
| 2251 | } | 
| 2252 | } | 
| 2253 | } | 
| 2254 | rnemdFile_ << std::endl; | 
| 2255 |  | 
| 2256 | } | 
| 2257 |  | 
| 2258 | rnemdFile_.flush(); | 
| 2259 | rnemdFile_.close(); | 
| 2260 |  | 
| 2261 | #ifdef IS_MPI | 
| 2262 | } | 
| 2263 | #endif | 
| 2264 |  | 
| 2265 | } | 
| 2266 |  | 
| 2267 | void RNEMD::writeReal(int index, unsigned int bin) { | 
| 2268 | if (!doRNEMD_) return; | 
| 2269 | assert(index >=0 && index < ENDINDEX); | 
| 2270 | assert(int(bin) < nBins_); | 
| 2271 | RealType s; | 
| 2272 | int count; | 
| 2273 |  | 
| 2274 | count = data_[index].accumulator[bin]->count(); | 
| 2275 | if (count == 0) return; | 
| 2276 |  | 
| 2277 | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); | 
| 2278 |  | 
| 2279 | if (! isinf(s) && ! isnan(s)) { | 
| 2280 | rnemdFile_ << "\t" << s; | 
| 2281 | } else{ | 
| 2282 | sprintf( painCave.errMsg, | 
| 2283 | "RNEMD detected a numerical error writing: %s for bin %u", | 
| 2284 | data_[index].title.c_str(), bin); | 
| 2285 | painCave.isFatal = 1; | 
| 2286 | simError(); | 
| 2287 | } | 
| 2288 | } | 
| 2289 |  | 
| 2290 | void RNEMD::writeVector(int index, unsigned int bin) { | 
| 2291 | if (!doRNEMD_) return; | 
| 2292 | assert(index >=0 && index < ENDINDEX); | 
| 2293 | assert(int(bin) < nBins_); | 
| 2294 | Vector3d s; | 
| 2295 | int count; | 
| 2296 |  | 
| 2297 | count = data_[index].accumulator[bin]->count(); | 
| 2298 |  | 
| 2299 | if (count == 0) return; | 
| 2300 |  | 
| 2301 | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); | 
| 2302 | if (isinf(s[0]) || isnan(s[0]) || | 
| 2303 | isinf(s[1]) || isnan(s[1]) || | 
| 2304 | isinf(s[2]) || isnan(s[2]) ) { | 
| 2305 | sprintf( painCave.errMsg, | 
| 2306 | "RNEMD detected a numerical error writing: %s for bin %u", | 
| 2307 | data_[index].title.c_str(), bin); | 
| 2308 | painCave.isFatal = 1; | 
| 2309 | simError(); | 
| 2310 | } else { | 
| 2311 | rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; | 
| 2312 | } | 
| 2313 | } | 
| 2314 |  | 
| 2315 | void RNEMD::writeRealStdDev(int index, unsigned int bin) { | 
| 2316 | if (!doRNEMD_) return; | 
| 2317 | assert(index >=0 && index < ENDINDEX); | 
| 2318 | assert(int(bin) < nBins_); | 
| 2319 | RealType s; | 
| 2320 | int count; | 
| 2321 |  | 
| 2322 | count = data_[index].accumulator[bin]->count(); | 
| 2323 | if (count == 0) return; | 
| 2324 |  | 
| 2325 | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); | 
| 2326 |  | 
| 2327 | if (! isinf(s) && ! isnan(s)) { | 
| 2328 | rnemdFile_ << "\t" << s; | 
| 2329 | } else{ | 
| 2330 | sprintf( painCave.errMsg, | 
| 2331 | "RNEMD detected a numerical error writing: %s std. dev. for bin %u", | 
| 2332 | data_[index].title.c_str(), bin); | 
| 2333 | painCave.isFatal = 1; | 
| 2334 | simError(); | 
| 2335 | } | 
| 2336 | } | 
| 2337 |  | 
| 2338 | void RNEMD::writeVectorStdDev(int index, unsigned int bin) { | 
| 2339 | if (!doRNEMD_) return; | 
| 2340 | assert(index >=0 && index < ENDINDEX); | 
| 2341 | assert(int(bin) < nBins_); | 
| 2342 | Vector3d s; | 
| 2343 | int count; | 
| 2344 |  | 
| 2345 | count = data_[index].accumulator[bin]->count(); | 
| 2346 | if (count == 0) return; | 
| 2347 |  | 
| 2348 | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); | 
| 2349 | if (isinf(s[0]) || isnan(s[0]) || | 
| 2350 | isinf(s[1]) || isnan(s[1]) || | 
| 2351 | isinf(s[2]) || isnan(s[2]) ) { | 
| 2352 | sprintf( painCave.errMsg, | 
| 2353 | "RNEMD detected a numerical error writing: %s std. dev. for bin %u", | 
| 2354 | data_[index].title.c_str(), bin); | 
| 2355 | painCave.isFatal = 1; | 
| 2356 | simError(); | 
| 2357 | } else { | 
| 2358 | rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; | 
| 2359 | } | 
| 2360 | } | 
| 2361 | } | 
| 2362 |  |