| 1 | gezelter | 1765 | /* | 
| 2 |  |  | * Copyright (c) 2012 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 |  |  | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 |  |  | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | gezelter | 1879 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | gezelter | 1765 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  |  | */ | 
| 42 |  |  |  | 
| 43 |  |  | #ifndef UTILS_ACCUMULATOR_HPP | 
| 44 |  |  | #define UTILS_ACCUMULATOR_HPP | 
| 45 |  |  |  | 
| 46 |  |  | #include <cmath> | 
| 47 |  |  | #include <cassert> | 
| 48 |  |  | #include "math/Vector3.hpp" | 
| 49 |  |  |  | 
| 50 |  |  | namespace OpenMD { | 
| 51 |  |  |  | 
| 52 | gezelter | 1791 |  | 
| 53 |  |  | class BaseAccumulator { | 
| 54 |  |  | public: | 
| 55 |  |  | virtual void clear() = 0; | 
| 56 |  |  | /** | 
| 57 |  |  | * get the number of accumulated values | 
| 58 |  |  | */ | 
| 59 |  |  | virtual size_t count()  { | 
| 60 |  |  | return Count_; | 
| 61 |  |  | } | 
| 62 |  |  | protected: | 
| 63 |  |  | size_t Count_; | 
| 64 |  |  |  | 
| 65 |  |  | }; | 
| 66 |  |  |  | 
| 67 |  |  |  | 
| 68 |  |  |  | 
| 69 | gezelter | 1765 | /** | 
| 70 |  |  | * Basic Accumulator class for numbers. | 
| 71 | gezelter | 1791 | */ | 
| 72 |  |  | class Accumulator : public BaseAccumulator { | 
| 73 | gezelter | 1765 |  | 
| 74 |  |  | typedef RealType ElementType; | 
| 75 |  |  | typedef RealType ResultType; | 
| 76 |  |  |  | 
| 77 |  |  | public: | 
| 78 |  |  |  | 
| 79 | gezelter | 1791 | Accumulator() : BaseAccumulator() { | 
| 80 | gezelter | 1765 | this->clear(); | 
| 81 |  |  | } | 
| 82 |  |  |  | 
| 83 |  |  | /** | 
| 84 |  |  | * Accumulate another value | 
| 85 |  |  | */ | 
| 86 |  |  | virtual void add(ElementType const& val) { | 
| 87 |  |  | Count_++; | 
| 88 |  |  | Avg_  += (val       - Avg_ ) / Count_; | 
| 89 |  |  | Avg2_ += (val * val - Avg2_) / Count_; | 
| 90 |  |  | Val_   = val; | 
| 91 |  |  | if (Count_ <= 1) { | 
| 92 |  |  | Max_ = val; | 
| 93 |  |  | Min_ = val; | 
| 94 |  |  | } else { | 
| 95 |  |  | Max_ = val > Max_ ? val : Max_; | 
| 96 |  |  | Min_ = val < Min_ ? val : Min_; | 
| 97 |  |  | } | 
| 98 |  |  | } | 
| 99 |  |  |  | 
| 100 |  |  | /** | 
| 101 |  |  | * reset the Accumulator to the empty state | 
| 102 |  |  | */ | 
| 103 |  |  | void clear() { | 
| 104 |  |  | Count_ = 0; | 
| 105 |  |  | Avg_   = 0; | 
| 106 |  |  | Avg2_  = 0; | 
| 107 |  |  | Val_   = 0; | 
| 108 |  |  | } | 
| 109 |  |  |  | 
| 110 |  |  |  | 
| 111 |  |  | /** | 
| 112 |  |  | * return the most recently added value | 
| 113 |  |  | */ | 
| 114 |  |  | void getLastValue(ElementType &ret)  { | 
| 115 |  |  | ret = Val_; | 
| 116 |  |  | return; | 
| 117 |  |  | } | 
| 118 |  |  |  | 
| 119 |  |  | /** | 
| 120 |  |  | * compute the Mean | 
| 121 |  |  | */ | 
| 122 |  |  | void getAverage(ResultType &ret)  { | 
| 123 |  |  | assert(Count_ != 0); | 
| 124 |  |  | ret = Avg_; | 
| 125 |  |  | return; | 
| 126 |  |  | } | 
| 127 |  |  |  | 
| 128 |  |  | /** | 
| 129 |  |  | * compute the Variance | 
| 130 |  |  | */ | 
| 131 |  |  | void getVariance(ResultType &ret)  { | 
| 132 |  |  | assert(Count_ != 0); | 
| 133 |  |  | ret = (Avg2_ - Avg_  * Avg_); | 
| 134 |  |  | return; | 
| 135 |  |  | } | 
| 136 |  |  |  | 
| 137 |  |  | /** | 
| 138 |  |  | * compute error of average value | 
| 139 |  |  | */ | 
| 140 |  |  | void getStdDev(ResultType &ret)  { | 
| 141 |  |  | assert(Count_ != 0); | 
| 142 |  |  | RealType var; | 
| 143 |  |  | this->getVariance(var); | 
| 144 |  |  | ret = sqrt(var); | 
| 145 |  |  | return; | 
| 146 |  |  | } | 
| 147 |  |  |  | 
| 148 |  |  | /** | 
| 149 |  |  | * return the largest value | 
| 150 |  |  | */ | 
| 151 |  |  | void getMax(ElementType &ret)  { | 
| 152 |  |  | assert(Count_ != 0); | 
| 153 |  |  | ret = Max_; | 
| 154 |  |  | return; | 
| 155 |  |  | } | 
| 156 |  |  |  | 
| 157 |  |  | /** | 
| 158 |  |  | * return the smallest value | 
| 159 |  |  | */ | 
| 160 |  |  | void getMin(ElementType &ret)  { | 
| 161 |  |  | assert(Count_ != 0); | 
| 162 |  |  | ret = Max_; | 
| 163 |  |  | return; | 
| 164 |  |  | } | 
| 165 |  |  |  | 
| 166 | gezelter | 1979 | /** | 
| 167 |  |  | * return the 95% confidence interval: | 
| 168 |  |  | * | 
| 169 |  |  | * That is returns c, such that we have 95% confidence that the | 
| 170 |  |  | * true mean is within 2c of the Average (x): | 
| 171 |  |  | * | 
| 172 |  |  | *   x - c <= true mean <= x + c | 
| 173 |  |  | * | 
| 174 |  |  | */ | 
| 175 |  |  | void get95percentConfidenceInterval(ResultType &ret) { | 
| 176 |  |  | assert(Count_ != 0); | 
| 177 |  |  | RealType sd; | 
| 178 |  |  | this->getStdDev(sd); | 
| 179 | gezelter | 1980 | ret = 1.960 * sd / sqrt(RealType(Count_)); | 
| 180 | gezelter | 1979 | return; | 
| 181 |  |  | } | 
| 182 |  |  |  | 
| 183 | gezelter | 1765 | private: | 
| 184 |  |  | ElementType Val_; | 
| 185 |  |  | ResultType Avg_; | 
| 186 |  |  | ResultType Avg2_; | 
| 187 |  |  | ElementType Min_; | 
| 188 |  |  | ElementType Max_; | 
| 189 |  |  | }; | 
| 190 |  |  |  | 
| 191 | gezelter | 1791 | class VectorAccumulator : public BaseAccumulator { | 
| 192 | gezelter | 1765 |  | 
| 193 |  |  | typedef Vector3d ElementType; | 
| 194 |  |  | typedef Vector3d ResultType; | 
| 195 |  |  |  | 
| 196 |  |  | public: | 
| 197 | gezelter | 1791 | VectorAccumulator() : BaseAccumulator() { | 
| 198 | gezelter | 1765 | this->clear(); | 
| 199 |  |  | } | 
| 200 |  |  |  | 
| 201 |  |  | /** | 
| 202 |  |  | * Accumulate another value | 
| 203 |  |  | */ | 
| 204 |  |  | void add(ElementType const& val) { | 
| 205 |  |  | Count_++; | 
| 206 |  |  | RealType len(0.0); | 
| 207 |  |  | for (unsigned int i =0; i < 3; i++) { | 
| 208 |  |  | Avg_[i]  += (val[i]       - Avg_[i] ) / Count_; | 
| 209 |  |  | Avg2_[i] += (val[i] * val[i] - Avg2_[i]) / Count_; | 
| 210 |  |  | Val_[i]   = val[i]; | 
| 211 |  |  | len += val[i]*val[i]; | 
| 212 |  |  | } | 
| 213 |  |  | len = sqrt(len); | 
| 214 |  |  | AvgLen_  += (len       - AvgLen_ ) / Count_; | 
| 215 |  |  | AvgLen2_ += (len * len - AvgLen2_) / Count_; | 
| 216 |  |  |  | 
| 217 |  |  | if (Count_ <= 1) { | 
| 218 |  |  | Max_ = len; | 
| 219 |  |  | Min_ = len; | 
| 220 |  |  | } else { | 
| 221 |  |  | Max_ = len > Max_ ? len : Max_; | 
| 222 |  |  | Min_ = len < Min_ ? len : Min_; | 
| 223 |  |  | } | 
| 224 |  |  | } | 
| 225 |  |  |  | 
| 226 |  |  | /** | 
| 227 |  |  | * reset the Accumulator to the empty state | 
| 228 |  |  | */ | 
| 229 |  |  | void clear() { | 
| 230 |  |  | Count_ = 0; | 
| 231 |  |  | Avg_ = V3Zero; | 
| 232 |  |  | Avg2_ = V3Zero; | 
| 233 |  |  | Val_ = V3Zero; | 
| 234 |  |  | AvgLen_   = 0; | 
| 235 |  |  | AvgLen2_  = 0; | 
| 236 |  |  | } | 
| 237 |  |  |  | 
| 238 |  |  | /** | 
| 239 |  |  | * return the most recently added value | 
| 240 |  |  | */ | 
| 241 |  |  | void getLastValue(ElementType &ret) { | 
| 242 |  |  | ret = Val_; | 
| 243 |  |  | return; | 
| 244 |  |  | } | 
| 245 |  |  |  | 
| 246 |  |  | /** | 
| 247 |  |  | * compute the Mean | 
| 248 |  |  | */ | 
| 249 |  |  | void getAverage(ResultType &ret) { | 
| 250 |  |  | assert(Count_ != 0); | 
| 251 |  |  | ret = Avg_; | 
| 252 |  |  | return; | 
| 253 |  |  | } | 
| 254 |  |  |  | 
| 255 |  |  | /** | 
| 256 |  |  | * compute the Variance | 
| 257 |  |  | */ | 
| 258 |  |  | void getVariance(ResultType &ret) { | 
| 259 |  |  | assert(Count_ != 0); | 
| 260 |  |  | for (unsigned int i =0; i < 3; i++) { | 
| 261 |  |  | ret[i] = (Avg2_[i] - Avg_[i]  * Avg_[i]); | 
| 262 |  |  | } | 
| 263 |  |  | return; | 
| 264 |  |  | } | 
| 265 |  |  |  | 
| 266 |  |  | /** | 
| 267 |  |  | * compute error of average value | 
| 268 |  |  | */ | 
| 269 |  |  | void getStdDev(ResultType &ret) { | 
| 270 |  |  | assert(Count_ != 0); | 
| 271 |  |  | ResultType var; | 
| 272 |  |  | this->getVariance(var); | 
| 273 |  |  | ret[0] = sqrt(var[0]); | 
| 274 |  |  | ret[1] = sqrt(var[1]); | 
| 275 |  |  | ret[2] = sqrt(var[2]); | 
| 276 |  |  | return; | 
| 277 |  |  | } | 
| 278 |  |  |  | 
| 279 |  |  | /** | 
| 280 | gezelter | 1979 | * return the 95% confidence interval: | 
| 281 |  |  | * | 
| 282 |  |  | * That is returns c, such that we have 95% confidence that the | 
| 283 |  |  | * true mean is within 2c of the Average (x): | 
| 284 |  |  | * | 
| 285 |  |  | *   x - c <= true mean <= x + c | 
| 286 |  |  | * | 
| 287 |  |  | */ | 
| 288 |  |  | void get95percentConfidenceInterval(ResultType &ret) { | 
| 289 |  |  | assert(Count_ != 0); | 
| 290 |  |  | ResultType sd; | 
| 291 |  |  | this->getStdDev(sd); | 
| 292 | gezelter | 1980 | ret[0] = 1.960 * sd[0] / sqrt(RealType(Count_)); | 
| 293 |  |  | ret[1] = 1.960 * sd[1] / sqrt(RealType(Count_)); | 
| 294 |  |  | ret[2] = 1.960 * sd[2] / sqrt(RealType(Count_)); | 
| 295 | gezelter | 1979 | return; | 
| 296 |  |  | } | 
| 297 |  |  |  | 
| 298 |  |  | /** | 
| 299 | gezelter | 1765 | * return the largest length | 
| 300 |  |  | */ | 
| 301 |  |  | void getMaxLength(RealType &ret) { | 
| 302 |  |  | assert(Count_ != 0); | 
| 303 |  |  | ret = Max_; | 
| 304 |  |  | return; | 
| 305 |  |  | } | 
| 306 |  |  |  | 
| 307 |  |  | /** | 
| 308 |  |  | * return the smallest length | 
| 309 |  |  | */ | 
| 310 |  |  | void getMinLength(RealType &ret) { | 
| 311 |  |  | assert(Count_ != 0); | 
| 312 |  |  | ret = Min_; | 
| 313 |  |  | return; | 
| 314 |  |  | } | 
| 315 |  |  |  | 
| 316 |  |  | /** | 
| 317 |  |  | * return the largest length | 
| 318 |  |  | */ | 
| 319 |  |  | void getAverageLength(RealType &ret) { | 
| 320 |  |  | assert(Count_ != 0); | 
| 321 |  |  | ret = AvgLen_; | 
| 322 |  |  | return; | 
| 323 |  |  | } | 
| 324 |  |  |  | 
| 325 |  |  | /** | 
| 326 |  |  | * compute the Variance of the length | 
| 327 |  |  | */ | 
| 328 |  |  | void getLengthVariance(RealType &ret) { | 
| 329 |  |  | assert(Count_ != 0); | 
| 330 |  |  | ret= (AvgLen2_ - AvgLen_ * AvgLen_); | 
| 331 |  |  | return; | 
| 332 |  |  | } | 
| 333 |  |  |  | 
| 334 |  |  | /** | 
| 335 |  |  | * compute error of average value | 
| 336 |  |  | */ | 
| 337 |  |  | void getLengthStdDev(RealType &ret) { | 
| 338 |  |  | assert(Count_ != 0); | 
| 339 |  |  | RealType var; | 
| 340 |  |  | this->getLengthVariance(var); | 
| 341 |  |  | ret = sqrt(var); | 
| 342 |  |  | return; | 
| 343 |  |  | } | 
| 344 | gezelter | 1879 |  | 
| 345 | gezelter | 1979 | /** | 
| 346 |  |  | * return the 95% confidence interval: | 
| 347 |  |  | * | 
| 348 |  |  | * That is returns c, such that we have 95% confidence that the | 
| 349 |  |  | * true mean is within 2c of the Average (x): | 
| 350 |  |  | * | 
| 351 |  |  | *   x - c <= true mean <= x + c | 
| 352 |  |  | * | 
| 353 |  |  | */ | 
| 354 |  |  | void getLength95percentConfidenceInterval(ResultType &ret) { | 
| 355 |  |  | assert(Count_ != 0); | 
| 356 |  |  | RealType sd; | 
| 357 |  |  | this->getLengthStdDev(sd); | 
| 358 | gezelter | 1980 | ret = 1.960 * sd / sqrt(RealType(Count_)); | 
| 359 | gezelter | 1979 | return; | 
| 360 |  |  | } | 
| 361 |  |  |  | 
| 362 |  |  |  | 
| 363 | gezelter | 1765 | private: | 
| 364 |  |  | ResultType Val_; | 
| 365 |  |  | ResultType Avg_; | 
| 366 |  |  | ResultType Avg2_; | 
| 367 |  |  | RealType AvgLen_; | 
| 368 |  |  | RealType AvgLen2_; | 
| 369 |  |  | RealType Min_; | 
| 370 |  |  | RealType Max_; | 
| 371 |  |  |  | 
| 372 |  |  | }; | 
| 373 |  |  |  | 
| 374 | gezelter | 1791 | class MatrixAccumulator : public BaseAccumulator { | 
| 375 | gezelter | 1765 |  | 
| 376 |  |  | typedef Mat3x3d ElementType; | 
| 377 |  |  | typedef Mat3x3d ResultType; | 
| 378 |  |  |  | 
| 379 |  |  | public: | 
| 380 | gezelter | 1791 | MatrixAccumulator() : BaseAccumulator() { | 
| 381 | gezelter | 1765 | this->clear(); | 
| 382 |  |  | } | 
| 383 |  |  |  | 
| 384 |  |  | /** | 
| 385 |  |  | * Accumulate another value | 
| 386 |  |  | */ | 
| 387 |  |  | void add(ElementType const& val) { | 
| 388 |  |  | Count_++; | 
| 389 |  |  | for (unsigned int i = 0; i < 3; i++) { | 
| 390 |  |  | for (unsigned int j = 0; j < 3; j++) { | 
| 391 |  |  | Avg_(i,j)  += (val(i,j)       - Avg_(i,j) ) / Count_; | 
| 392 |  |  | Avg2_(i,j) += (val(i,j) * val(i,j) - Avg2_(i,j)) / Count_; | 
| 393 |  |  | Val_(i,j)   = val(i,j); | 
| 394 |  |  | } | 
| 395 |  |  | } | 
| 396 |  |  | } | 
| 397 |  |  |  | 
| 398 |  |  | /** | 
| 399 |  |  | * reset the Accumulator to the empty state | 
| 400 |  |  | */ | 
| 401 |  |  | void clear() { | 
| 402 |  |  | Count_ = 0; | 
| 403 |  |  | Avg_ *= 0.0; | 
| 404 |  |  | Avg2_ *= 0.0; | 
| 405 |  |  | Val_ *= 0.0; | 
| 406 |  |  | } | 
| 407 |  |  |  | 
| 408 |  |  | /** | 
| 409 |  |  | * return the most recently added value | 
| 410 |  |  | */ | 
| 411 |  |  | void getLastValue(ElementType &ret) { | 
| 412 |  |  | ret = Val_; | 
| 413 |  |  | return; | 
| 414 |  |  | } | 
| 415 |  |  |  | 
| 416 |  |  | /** | 
| 417 |  |  | * compute the Mean | 
| 418 |  |  | */ | 
| 419 |  |  | void getAverage(ResultType &ret) { | 
| 420 |  |  | assert(Count_ != 0); | 
| 421 |  |  | ret = Avg_; | 
| 422 |  |  | return; | 
| 423 |  |  | } | 
| 424 |  |  |  | 
| 425 |  |  | /** | 
| 426 |  |  | * compute the Variance | 
| 427 |  |  | */ | 
| 428 |  |  | void getVariance(ResultType &ret) { | 
| 429 |  |  | assert(Count_ != 0); | 
| 430 |  |  | for (unsigned int i = 0; i < 3; i++) { | 
| 431 |  |  | for (unsigned int j = 0; j < 3; j++) { | 
| 432 |  |  | ret(i,j) = (Avg2_(i,j) - Avg_(i,j)  * Avg_(i,j)); | 
| 433 |  |  | } | 
| 434 |  |  | } | 
| 435 |  |  | return; | 
| 436 |  |  | } | 
| 437 |  |  |  | 
| 438 |  |  | /** | 
| 439 |  |  | * compute error of average value | 
| 440 |  |  | */ | 
| 441 |  |  | void getStdDev(ResultType &ret) { | 
| 442 |  |  | assert(Count_ != 0); | 
| 443 |  |  | Mat3x3d var; | 
| 444 |  |  | this->getVariance(var); | 
| 445 |  |  | for (unsigned int i = 0; i < 3; i++) { | 
| 446 |  |  | for (unsigned int j = 0; j < 3; j++) { | 
| 447 |  |  | ret(i,j) = sqrt(var(i,j)); | 
| 448 |  |  | } | 
| 449 |  |  | } | 
| 450 |  |  | return; | 
| 451 |  |  | } | 
| 452 | gezelter | 1979 |  | 
| 453 |  |  | /** | 
| 454 |  |  | * return the 95% confidence interval: | 
| 455 |  |  | * | 
| 456 |  |  | * That is returns c, such that we have 95% confidence that the | 
| 457 |  |  | * true mean is within 2c of the Average (x): | 
| 458 |  |  | * | 
| 459 |  |  | *   x - c <= true mean <= x + c | 
| 460 |  |  | * | 
| 461 |  |  | */ | 
| 462 |  |  | void get95percentConfidenceInterval(ResultType &ret) { | 
| 463 |  |  | assert(Count_ != 0); | 
| 464 |  |  | Mat3x3d sd; | 
| 465 |  |  | this->getStdDev(sd); | 
| 466 |  |  | for (unsigned int i = 0; i < 3; i++) { | 
| 467 |  |  | for (unsigned int j = 0; j < 3; j++) { | 
| 468 | gezelter | 1980 | ret(i,j) = 1.960 * sd(i,j) / sqrt(RealType(Count_)); | 
| 469 | gezelter | 1979 | } | 
| 470 |  |  | } | 
| 471 |  |  | return; | 
| 472 |  |  | } | 
| 473 |  |  |  | 
| 474 | gezelter | 1765 | private: | 
| 475 |  |  | ElementType Val_; | 
| 476 |  |  | ResultType Avg_; | 
| 477 |  |  | ResultType Avg2_; | 
| 478 |  |  | }; | 
| 479 |  |  |  | 
| 480 |  |  |  | 
| 481 |  |  | } | 
| 482 |  |  |  | 
| 483 |  |  | #endif |