| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | + | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | + | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | #include <iostream> | 
| 49 |  | #include "utils/MoLocator.hpp" | 
| 50 |  | #include "types/AtomType.hpp" | 
| 51 |  |  | 
| 52 | < | namespace oopse { | 
| 52 | > | namespace OpenMD { | 
| 53 |  | MoLocator::MoLocator( MoleculeStamp* theStamp, ForceField* theFF){ | 
| 54 |  |  | 
| 55 |  | myStamp = theStamp; | 
| 58 |  | calcRef(); | 
| 59 |  | } | 
| 60 |  |  | 
| 61 | < | void MoLocator::placeMol( const Vector3d& offset, const Vector3d& ort, Molecule* mol){ | 
| 61 | > | void MoLocator::placeMol( const Vector3d& offset, const Vector3d& ort, | 
| 62 | > | Molecule* mol) { | 
| 63 | > |  | 
| 64 |  | Vector3d newCoor; | 
| 65 |  | Vector3d curRefCoor; | 
| 66 |  | RotMat3x3d rotMat = latVec2RotMat(ort); | 
| 67 |  |  | 
| 68 |  | if(mol->getNIntegrableObjects() != nIntegrableObjects){ | 
| 69 |  | sprintf( painCave.errMsg, | 
| 70 | < | "MoLocator error.\n" | 
| 71 | < | "  The number of integrable objects of MoleculeStamp is not the same as  that of Molecule\n"); | 
| 70 | > | "MoLocator::placeMol error.\n" | 
| 71 | > | "\tThe number of integrable objects of MoleculeStamp is not\n" | 
| 72 | > | "\tthe same as that of Molecule\n"); | 
| 73 |  | painCave.isFatal = 1; | 
| 74 |  | simError(); | 
| 75 |  | } | 
| 76 |  |  | 
| 77 |  | Molecule::IntegrableObjectIterator ii; | 
| 78 | < | StuntDouble* integrableObject; | 
| 78 | > | StuntDouble* sd; | 
| 79 |  | int i; | 
| 80 | < | for (integrableObject = mol->beginIntegrableObject(ii), i = 0; integrableObject != NULL; | 
| 81 | < | integrableObject = mol->nextIntegrableObject(ii), ++i) { | 
| 80 | > | for (sd = mol->beginIntegrableObject(ii), i = 0; sd != NULL; | 
| 81 | > | sd = mol->nextIntegrableObject(ii), ++i) { | 
| 82 |  |  | 
| 83 |  | newCoor = rotMat * refCoords[i]; | 
| 84 |  | newCoor += offset; | 
| 85 | + |  | 
| 86 | + | sd->setPos(newCoor); | 
| 87 | + | sd->setVel(V3Zero); | 
| 88 |  |  | 
| 89 | < | integrableObject->setPos( newCoor); | 
| 90 | < | integrableObject->setVel(V3Zero); | 
| 91 | < |  | 
| 85 | < | if(integrableObject->isDirectional()){ | 
| 86 | < | integrableObject->setA(rotMat * integrableObject->getA()); | 
| 87 | < | integrableObject->setJ(V3Zero); | 
| 89 | > | if(sd->isDirectional()){ | 
| 90 | > | sd->setA(rotMat * sd->getA()); | 
| 91 | > | sd->setJ(V3Zero); | 
| 92 |  | } | 
| 93 |  | } | 
| 94 |  | } | 
| 96 |  | void MoLocator::calcRef( void ){ | 
| 97 |  | AtomStamp* currAtomStamp; | 
| 98 |  | RigidBodyStamp* rbStamp; | 
| 99 | < | int nAtoms; | 
| 96 | < | int nRigidBodies; | 
| 97 | < | std::vector<double> mass; | 
| 99 | > | std::vector<RealType> mass; | 
| 100 |  | Vector3d coor; | 
| 101 |  | Vector3d refMolCom; | 
| 102 | < | int nAtomsInRb; | 
| 103 | < | double totMassInRb; | 
| 104 | < | double currAtomMass; | 
| 103 | < | double molMass; | 
| 102 | > | RealType totMassInRb; | 
| 103 | > | RealType currAtomMass; | 
| 104 | > | RealType molMass; | 
| 105 |  |  | 
| 106 | < | nAtoms= myStamp->getNAtoms(); | 
| 107 | < | nRigidBodies = myStamp->getNRigidBodies(); | 
| 106 | > | std::size_t nAtoms= myStamp->getNAtoms(); | 
| 107 | > | std::size_t nRigidBodies = myStamp->getNRigidBodies(); | 
| 108 |  |  | 
| 109 | < | for(size_t i=0; i<nAtoms; i++){ | 
| 109 | > | for(std::size_t i = 0; i < nAtoms; i++){ | 
| 110 |  |  | 
| 111 |  | currAtomStamp = myStamp->getAtomStamp(i); | 
| 112 |  |  | 
| 113 |  | if( !currAtomStamp->havePosition() ){ | 
| 114 |  | sprintf( painCave.errMsg, | 
| 115 | < | "MoLocator error.\n" | 
| 116 | < | "  Component %s, atom %s does not have a position specified.\n" | 
| 117 | < | "  This means MoLocator cannot initalize it's position.\n", | 
| 115 | > | "MoLocator::calcRef error.\n" | 
| 116 | > | "\tComponent %s, atom %s does not have a position specified.\n" | 
| 117 | > | "\tThis means MoLocator cannot initalize it's position.\n", | 
| 118 |  | myStamp->getName().c_str(), | 
| 119 |  | currAtomStamp->getType().c_str()); | 
| 120 |  |  | 
| 137 |  | } | 
| 138 |  | } | 
| 139 |  |  | 
| 140 | < | for(int i = 0; i < nRigidBodies; i++){ | 
| 140 | > | for(std::size_t i = 0; i < nRigidBodies; i++){ | 
| 141 |  |  | 
| 142 |  | rbStamp = myStamp->getRigidBodyStamp(i); | 
| 143 | < | nAtomsInRb = rbStamp->getNMembers(); | 
| 143 | > | std::size_t nAtomsInRb = rbStamp->getNMembers(); | 
| 144 |  |  | 
| 145 |  | coor.x() = 0.0; | 
| 146 |  | coor.y() = 0.0; | 
| 147 |  | coor.z() = 0.0; | 
| 148 |  | totMassInRb = 0.0; | 
| 149 |  |  | 
| 150 | < | for(int j = 0; j < nAtomsInRb; j++){ | 
| 150 | > | for(std::size_t j = 0; j < nAtomsInRb; j++){ | 
| 151 |  |  | 
| 152 |  | currAtomStamp = myStamp->getAtomStamp(rbStamp->getMemberAt(j)); | 
| 153 |  | currAtomMass = getAtomMass(currAtomStamp->getType(), myFF); | 
| 170 |  | refMolCom.y() = 0; | 
| 171 |  | refMolCom.z() = 0; | 
| 172 |  |  | 
| 173 | < | for(int i = 0; i < nIntegrableObjects; i++){ | 
| 173 | > | for(std::size_t i = 0; i < nIntegrableObjects; i++){ | 
| 174 |  | refMolCom += refCoords[i] * mass[i]; | 
| 175 |  | molMass += mass[i]; | 
| 176 |  | } | 
| 177 |  |  | 
| 178 |  | refMolCom /= molMass; | 
| 179 |  |  | 
| 180 | < | //move the reference center of mass to (0,0,0) and adjust the reference coordinate | 
| 181 | < | //of the integrabel objects | 
| 182 | < | for(int i = 0; i < nIntegrableObjects; i++) | 
| 180 | > | //move the reference center of mass to (0,0,0) and adjust the | 
| 181 | > | //reference coordinate of the integrabel objects | 
| 182 | > | for(std::size_t i = 0; i < nIntegrableObjects; i++) | 
| 183 |  | refCoords[i] -= refMolCom; | 
| 184 |  | } | 
| 185 |  |  | 
| 186 | < | double getAtomMass(const std::string& at, ForceField* myFF) { | 
| 187 | < | double mass; | 
| 186 | > | RealType MoLocator::getAtomMass(const std::string& at, ForceField* myFF) { | 
| 187 | > | RealType mass; | 
| 188 |  | AtomType* atomType= myFF->getAtomType(at); | 
| 189 |  | if (atomType != NULL) { | 
| 190 | < | mass =     atomType->getMass(); | 
| 190 | > | mass = atomType->getMass(); | 
| 191 |  | } else { | 
| 192 |  | mass = 0.0; | 
| 193 |  | std::cerr << "Can not find AtomType: " << at << std::endl; | 
| 195 |  | return mass; | 
| 196 |  | } | 
| 197 |  |  | 
| 198 | < | double getMolMass(MoleculeStamp *molStamp, ForceField *myFF) { | 
| 199 | < | int nAtoms; | 
| 200 | < | double totMass = 0; | 
| 198 | > | RealType MoLocator::getMolMass(MoleculeStamp *molStamp, ForceField *myFF) { | 
| 199 | > | unsigned int nAtoms; | 
| 200 | > | RealType totMass = 0; | 
| 201 |  | nAtoms = molStamp->getNAtoms(); | 
| 202 |  |  | 
| 203 | < | for(size_t i = 0; i < nAtoms; i++) { | 
| 203 | > | for(std::size_t i = 0; i < nAtoms; i++) { | 
| 204 |  | AtomStamp *currAtomStamp = molStamp->getAtomStamp(i); | 
| 205 |  | totMass += getAtomMass(currAtomStamp->getType(), myFF); | 
| 206 |  | } | 
| 207 |  | return totMass; | 
| 208 |  | } | 
| 209 | < | RotMat3x3d latVec2RotMat(const Vector3d& lv){ | 
| 209 | > |  | 
| 210 | > | RotMat3x3d MoLocator::latVec2RotMat(const Vector3d& lv){ | 
| 211 |  |  | 
| 212 | < | double theta =acos(lv[2]); | 
| 213 | < | double phi = atan2(lv[1], lv[0]); | 
| 214 | < | double psi = 0; | 
| 212 | > | RealType theta =acos(lv[2]); | 
| 213 | > | RealType phi = atan2(lv[1], lv[0]); | 
| 214 | > | RealType psi = 0; | 
| 215 |  |  | 
| 216 | < | return RotMat3x3d(phi, theta, psi); | 
| 215 | < |  | 
| 216 | > | return RotMat3x3d(phi, theta, psi); | 
| 217 |  | } | 
| 218 |  | } | 
| 219 |  |  |