| 47 |
|
!! precomputation of spline parameters. |
| 48 |
|
!! |
| 49 |
|
!! @author Charles F. Vardeman II |
| 50 |
< |
!! @version $Id: interpolation.F90,v 1.2 2006-04-14 20:04:31 gezelter Exp $ |
| 50 |
> |
!! @version $Id: interpolation.F90,v 1.3 2006-04-14 21:06:55 chrisfen Exp $ |
| 51 |
|
|
| 52 |
|
|
| 53 |
|
module INTERPOLATION |
| 68 |
|
end type cubicSpline |
| 69 |
|
|
| 70 |
|
interface newSpline |
| 71 |
< |
module procedure newSplineWithoutDerivs |
| 72 |
< |
module procedure newSplineWithDerivs |
| 71 |
> |
module procedure newSpline |
| 72 |
|
end interface |
| 73 |
|
|
| 74 |
|
public :: deleteSpline |
| 76 |
|
contains |
| 77 |
|
|
| 78 |
|
|
| 79 |
< |
subroutine newSplineWithoutDerivs(cs, x, y, yp1, ypn, boundary) |
| 79 |
> |
subroutine newSpline(cs, x, y, yp1, ypn) |
| 80 |
|
|
| 81 |
|
!************************************************************************ |
| 82 |
|
! |
| 97 |
|
! Parameters: |
| 98 |
|
! |
| 99 |
|
! Input, real x(N), the abscissas or X values of |
| 100 |
< |
! the data points. The entries of TAU are assumed to be |
| 100 |
> |
! the data points. The entries of x are assumed to be |
| 101 |
|
! strictly increasing. |
| 102 |
|
! |
| 103 |
|
! Input, real y(I), contains the function value at x(I) for |
| 114 |
|
type (cubicSpline), intent(inout) :: cs |
| 115 |
|
real( kind = DP ), intent(in) :: x(:), y(:) |
| 116 |
|
real( kind = DP ), intent(in) :: yp1, ypn |
| 118 |
– |
character(len=*), intent(in) :: boundary |
| 117 |
|
real( kind = DP ) :: g, divdif1, divdif3, dx |
| 118 |
|
integer :: i, alloc_error, np |
| 119 |
|
|
| 152 |
|
cs%c(1,i) = y(i) |
| 153 |
|
enddo |
| 154 |
|
|
| 155 |
< |
if ((boundary.eq.'l').or.(boundary.eq.'L').or. & |
| 156 |
< |
(boundary.eq.'b').or.(boundary.eq.'B')) then |
| 159 |
< |
cs%c(2,1) = yp1 |
| 160 |
< |
else |
| 161 |
< |
cs%c(2,1) = 0.0_DP |
| 162 |
< |
endif |
| 163 |
< |
if ((boundary.eq.'u').or.(boundary.eq.'U').or. & |
| 164 |
< |
(boundary.eq.'b').or.(boundary.eq.'B')) then |
| 165 |
< |
cs%c(2,1) = ypn |
| 166 |
< |
else |
| 167 |
< |
cs%c(2,1) = 0.0_DP |
| 168 |
< |
endif |
| 155 |
> |
! Set the first derivative of the function to the second coefficient of |
| 156 |
> |
! each of the endpoints |
| 157 |
|
|
| 158 |
+ |
cs%c(2,1) = yp1 |
| 159 |
+ |
cs%c(2,np) = ypn |
| 160 |
+ |
|
| 161 |
+ |
|
| 162 |
|
! |
| 163 |
|
! Set up the right hand side of the linear system. |
| 164 |
|
! |
| 215 |
|
cs%dx_i = 1.0_DP / dx |
| 216 |
|
return |
| 217 |
|
end subroutine newSplineWithoutDerivs |
| 226 |
– |
|
| 227 |
– |
subroutine newSplineWithDerivs(cs, x, y, yp) |
| 228 |
– |
|
| 229 |
– |
!************************************************************************ |
| 230 |
– |
! |
| 231 |
– |
! newSplineWithDerivs |
| 232 |
– |
|
| 233 |
– |
implicit none |
| 234 |
– |
|
| 235 |
– |
type (cubicSpline), intent(inout) :: cs |
| 236 |
– |
real( kind = DP ), intent(in) :: x(:), y(:), yp(:) |
| 237 |
– |
real( kind = DP ) :: g, divdif1, divdif3, dx |
| 238 |
– |
integer :: i, alloc_error, np |
| 239 |
– |
|
| 240 |
– |
alloc_error = 0 |
| 241 |
– |
|
| 242 |
– |
if (cs%np .ne. 0) then |
| 243 |
– |
call handleWarning("interpolation::newSplineWithDerivs", & |
| 244 |
– |
"Type was already created") |
| 245 |
– |
call deleteSpline(cs) |
| 246 |
– |
end if |
| 247 |
– |
|
| 248 |
– |
! make sure the sizes match |
| 249 |
– |
|
| 250 |
– |
if ((size(x) .ne. size(y)).or.(size(x) .ne. size(yp))) then |
| 251 |
– |
call handleError("interpolation::newSplineWithDerivs", & |
| 252 |
– |
"Array size mismatch") |
| 253 |
– |
end if |
| 254 |
– |
|
| 255 |
– |
np = size(x) |
| 256 |
– |
cs%np = np |
| 257 |
– |
|
| 258 |
– |
allocate(cs%x(np), stat=alloc_error) |
| 259 |
– |
if(alloc_error .ne. 0) then |
| 260 |
– |
call handleError("interpolation::newSplineWithDerivs", & |
| 261 |
– |
"Error in allocating storage for x") |
| 262 |
– |
endif |
| 263 |
– |
|
| 264 |
– |
allocate(cs%c(4,np), stat=alloc_error) |
| 265 |
– |
if(alloc_error .ne. 0) then |
| 266 |
– |
call handleError("interpolation::newSplineWithDerivs", & |
| 267 |
– |
"Error in allocating storage for c") |
| 268 |
– |
endif |
| 269 |
– |
|
| 270 |
– |
do i = 1, np |
| 271 |
– |
cs%x(i) = x(i) |
| 272 |
– |
cs%c(1,i) = y(i) |
| 273 |
– |
cs%c(2,i) = yp(i) |
| 274 |
– |
enddo |
| 275 |
– |
! |
| 276 |
– |
! Set the diagonal coefficients. |
| 277 |
– |
! |
| 278 |
– |
cs%c(4,1) = 1.0_DP |
| 279 |
– |
do i = 2, cs%np - 1 |
| 280 |
– |
cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) |
| 281 |
– |
end do |
| 282 |
– |
cs%c(4,cs%np) = 1.0_DP |
| 283 |
– |
! |
| 284 |
– |
! Set the off-diagonal coefficients. |
| 285 |
– |
! |
| 286 |
– |
cs%c(3,1) = 0.0_DP |
| 287 |
– |
do i = 2, cs%np |
| 288 |
– |
cs%c(3,i) = x(i) - x(i-1) |
| 289 |
– |
end do |
| 290 |
– |
! |
| 291 |
– |
! Forward elimination. |
| 292 |
– |
! |
| 293 |
– |
do i = 2, cs%np - 1 |
| 294 |
– |
g = -cs%c(3,i+1) / cs%c(4,i-1) |
| 295 |
– |
cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) |
| 296 |
– |
cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) |
| 297 |
– |
end do |
| 298 |
– |
! |
| 299 |
– |
! Back substitution for the interior slopes. |
| 300 |
– |
! |
| 301 |
– |
do i = cs%np - 1, 2, -1 |
| 302 |
– |
cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) |
| 303 |
– |
end do |
| 304 |
– |
! |
| 305 |
– |
! Now compute the quadratic and cubic coefficients used in the |
| 306 |
– |
! piecewise polynomial representation. |
| 307 |
– |
! |
| 308 |
– |
do i = 1, cs%np - 1 |
| 309 |
– |
dx = x(i+1) - x(i) |
| 310 |
– |
divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx |
| 311 |
– |
divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 |
| 312 |
– |
cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx |
| 313 |
– |
cs%c(4,i) = divdif3 / ( dx * dx ) |
| 314 |
– |
end do |
| 218 |
|
|
| 316 |
– |
cs%c(3,cs%np) = 0.0_DP |
| 317 |
– |
cs%c(4,cs%np) = 0.0_DP |
| 318 |
– |
|
| 319 |
– |
cs%dx = dx |
| 320 |
– |
cs%dx_i = 1.0_DP / dx |
| 321 |
– |
|
| 322 |
– |
return |
| 323 |
– |
end subroutine newSplineWithDerivs |
| 324 |
– |
|
| 219 |
|
subroutine deleteSpline(this) |
| 220 |
|
|
| 221 |
|
type(cubicSpline) :: this |