| 1 |
!! |
| 2 |
!! Copyright (c) 2006 The University of Notre Dame. All Rights Reserved. |
| 3 |
!! |
| 4 |
!! The University of Notre Dame grants you ("Licensee") a |
| 5 |
!! non-exclusive, royalty free, license to use, modify and |
| 6 |
!! redistribute this software in source and binary code form, provided |
| 7 |
!! that the following conditions are met: |
| 8 |
!! |
| 9 |
!! 1. Acknowledgement of the program authors must be made in any |
| 10 |
!! publication of scientific results based in part on use of the |
| 11 |
!! program. An acceptable form of acknowledgement is citation of |
| 12 |
!! the article in which the program was described (Matthew |
| 13 |
!! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
!! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
!! Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
!! J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
!! |
| 18 |
!! 2. Redistributions of source code must retain the above copyright |
| 19 |
!! notice, this list of conditions and the following disclaimer. |
| 20 |
!! |
| 21 |
!! 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
!! notice, this list of conditions and the following disclaimer in the |
| 23 |
!! documentation and/or other materials provided with the |
| 24 |
!! distribution. |
| 25 |
!! |
| 26 |
!! This software is provided "AS IS," without a warranty of any |
| 27 |
!! kind. All express or implied conditions, representations and |
| 28 |
!! warranties, including any implied warranty of merchantability, |
| 29 |
!! fitness for a particular purpose or non-infringement, are hereby |
| 30 |
!! excluded. The University of Notre Dame and its licensors shall not |
| 31 |
!! be liable for any damages suffered by licensee as a result of |
| 32 |
!! using, modifying or distributing the software or its |
| 33 |
!! derivatives. In no event will the University of Notre Dame or its |
| 34 |
!! licensors be liable for any lost revenue, profit or data, or for |
| 35 |
!! direct, indirect, special, consequential, incidental or punitive |
| 36 |
!! damages, however caused and regardless of the theory of liability, |
| 37 |
!! arising out of the use of or inability to use software, even if the |
| 38 |
!! University of Notre Dame has been advised of the possibility of |
| 39 |
!! such damages. |
| 40 |
!! |
| 41 |
!! |
| 42 |
!! interpolation.F90 |
| 43 |
!! |
| 44 |
!! Created by Charles F. Vardeman II on 03 Apr 2006. |
| 45 |
!! |
| 46 |
!! PURPOSE: Generic Spline interplelation routines. These routines assume that we are on a uniform grid for |
| 47 |
!! precomputation of spline parameters. |
| 48 |
!! |
| 49 |
!! @author Charles F. Vardeman II |
| 50 |
!! @version $Id: interpolation.F90,v 1.3 2006-04-14 21:06:55 chrisfen Exp $ |
| 51 |
|
| 52 |
|
| 53 |
module INTERPOLATION |
| 54 |
use definitions |
| 55 |
use status |
| 56 |
implicit none |
| 57 |
PRIVATE |
| 58 |
|
| 59 |
character(len = statusMsgSize) :: errMSG |
| 60 |
|
| 61 |
type, public :: cubicSpline |
| 62 |
private |
| 63 |
integer :: np = 0 |
| 64 |
real(kind=dp) :: dx |
| 65 |
real(kind=dp) :: dx_i |
| 66 |
real (kind=dp), pointer,dimension(:) :: x => null() |
| 67 |
real (kind=dp), pointer,dimension(:,:) :: c => null() |
| 68 |
end type cubicSpline |
| 69 |
|
| 70 |
interface newSpline |
| 71 |
module procedure newSpline |
| 72 |
end interface |
| 73 |
|
| 74 |
public :: deleteSpline |
| 75 |
|
| 76 |
contains |
| 77 |
|
| 78 |
|
| 79 |
subroutine newSpline(cs, x, y, yp1, ypn) |
| 80 |
|
| 81 |
!************************************************************************ |
| 82 |
! |
| 83 |
! newSplineWithoutDerivs solves for slopes defining a cubic spline. |
| 84 |
! |
| 85 |
! Discussion: |
| 86 |
! |
| 87 |
! A tridiagonal linear system for the unknown slopes S(I) of |
| 88 |
! F at x(I), I=1,..., N, is generated and then solved by Gauss |
| 89 |
! elimination, with S(I) ending up in cs%C(2,I), for all I. |
| 90 |
! |
| 91 |
! Reference: |
| 92 |
! |
| 93 |
! Carl DeBoor, |
| 94 |
! A Practical Guide to Splines, |
| 95 |
! Springer Verlag. |
| 96 |
! |
| 97 |
! Parameters: |
| 98 |
! |
| 99 |
! Input, real x(N), the abscissas or X values of |
| 100 |
! the data points. The entries of x are assumed to be |
| 101 |
! strictly increasing. |
| 102 |
! |
| 103 |
! Input, real y(I), contains the function value at x(I) for |
| 104 |
! I = 1, N. |
| 105 |
! |
| 106 |
! yp1 contains the slope at x(1) and ypn contains |
| 107 |
! the slope at x(N). |
| 108 |
! |
| 109 |
! On output, the intermediate slopes at x(I) have been |
| 110 |
! stored in cs%C(2,I), for I = 2 to N-1. |
| 111 |
|
| 112 |
implicit none |
| 113 |
|
| 114 |
type (cubicSpline), intent(inout) :: cs |
| 115 |
real( kind = DP ), intent(in) :: x(:), y(:) |
| 116 |
real( kind = DP ), intent(in) :: yp1, ypn |
| 117 |
real( kind = DP ) :: g, divdif1, divdif3, dx |
| 118 |
integer :: i, alloc_error, np |
| 119 |
|
| 120 |
alloc_error = 0 |
| 121 |
|
| 122 |
if (cs%np .ne. 0) then |
| 123 |
call handleWarning("interpolation::newSplineWithoutDerivs", & |
| 124 |
"Type was already created") |
| 125 |
call deleteSpline(cs) |
| 126 |
end if |
| 127 |
|
| 128 |
! make sure the sizes match |
| 129 |
|
| 130 |
if (size(x) .ne. size(y)) then |
| 131 |
call handleError("interpolation::newSplineWithoutDerivs", & |
| 132 |
"Array size mismatch") |
| 133 |
end if |
| 134 |
|
| 135 |
np = size(x) |
| 136 |
cs%np = np |
| 137 |
|
| 138 |
allocate(cs%x(np), stat=alloc_error) |
| 139 |
if(alloc_error .ne. 0) then |
| 140 |
call handleError("interpolation::newSplineWithoutDerivs", & |
| 141 |
"Error in allocating storage for x") |
| 142 |
endif |
| 143 |
|
| 144 |
allocate(cs%c(4,np), stat=alloc_error) |
| 145 |
if(alloc_error .ne. 0) then |
| 146 |
call handleError("interpolation::newSplineWithoutDerivs", & |
| 147 |
"Error in allocating storage for c") |
| 148 |
endif |
| 149 |
|
| 150 |
do i = 1, np |
| 151 |
cs%x(i) = x(i) |
| 152 |
cs%c(1,i) = y(i) |
| 153 |
enddo |
| 154 |
|
| 155 |
! Set the first derivative of the function to the second coefficient of |
| 156 |
! each of the endpoints |
| 157 |
|
| 158 |
cs%c(2,1) = yp1 |
| 159 |
cs%c(2,np) = ypn |
| 160 |
|
| 161 |
|
| 162 |
! |
| 163 |
! Set up the right hand side of the linear system. |
| 164 |
! |
| 165 |
do i = 2, cs%np - 1 |
| 166 |
cs%c(2,i) = 3.0_DP * ( & |
| 167 |
(x(i) - x(i-1)) * (cs%c(1,i+1) - cs%c(1,i)) / (x(i+1) - x(i)) + & |
| 168 |
(x(i+1) - x(i)) * (cs%c(1,i) - cs%c(1,i-1)) / (x(i) - x(i-1))) |
| 169 |
end do |
| 170 |
! |
| 171 |
! Set the diagonal coefficients. |
| 172 |
! |
| 173 |
cs%c(4,1) = 1.0_DP |
| 174 |
do i = 2, cs%np - 1 |
| 175 |
cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) |
| 176 |
end do |
| 177 |
cs%c(4,cs%np) = 1.0_DP |
| 178 |
! |
| 179 |
! Set the off-diagonal coefficients. |
| 180 |
! |
| 181 |
cs%c(3,1) = 0.0_DP |
| 182 |
do i = 2, cs%np |
| 183 |
cs%c(3,i) = x(i) - x(i-1) |
| 184 |
end do |
| 185 |
! |
| 186 |
! Forward elimination. |
| 187 |
! |
| 188 |
do i = 2, cs%np - 1 |
| 189 |
g = -cs%c(3,i+1) / cs%c(4,i-1) |
| 190 |
cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) |
| 191 |
cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) |
| 192 |
end do |
| 193 |
! |
| 194 |
! Back substitution for the interior slopes. |
| 195 |
! |
| 196 |
do i = cs%np - 1, 2, -1 |
| 197 |
cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) |
| 198 |
end do |
| 199 |
! |
| 200 |
! Now compute the quadratic and cubic coefficients used in the |
| 201 |
! piecewise polynomial representation. |
| 202 |
! |
| 203 |
do i = 1, cs%np - 1 |
| 204 |
dx = x(i+1) - x(i) |
| 205 |
divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx |
| 206 |
divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 |
| 207 |
cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx |
| 208 |
cs%c(4,i) = divdif3 / ( dx * dx ) |
| 209 |
end do |
| 210 |
|
| 211 |
cs%c(3,cs%np) = 0.0_DP |
| 212 |
cs%c(4,cs%np) = 0.0_DP |
| 213 |
|
| 214 |
cs%dx = dx |
| 215 |
cs%dx_i = 1.0_DP / dx |
| 216 |
return |
| 217 |
end subroutine newSplineWithoutDerivs |
| 218 |
|
| 219 |
subroutine deleteSpline(this) |
| 220 |
|
| 221 |
type(cubicSpline) :: this |
| 222 |
|
| 223 |
if(associated(this%x)) then |
| 224 |
deallocate(this%x) |
| 225 |
this%x => null() |
| 226 |
end if |
| 227 |
if(associated(this%c)) then |
| 228 |
deallocate(this%c) |
| 229 |
this%c => null() |
| 230 |
end if |
| 231 |
|
| 232 |
this%np = 0 |
| 233 |
|
| 234 |
end subroutine deleteSpline |
| 235 |
|
| 236 |
subroutine lookup_nonuniform_spline(cs, xval, yval) |
| 237 |
|
| 238 |
!************************************************************************* |
| 239 |
! |
| 240 |
! lookup_nonuniform_spline evaluates a piecewise cubic Hermite interpolant. |
| 241 |
! |
| 242 |
! Discussion: |
| 243 |
! |
| 244 |
! newSpline must be called first, to set up the |
| 245 |
! spline data from the raw function and derivative data. |
| 246 |
! |
| 247 |
! Modified: |
| 248 |
! |
| 249 |
! 06 April 1999 |
| 250 |
! |
| 251 |
! Reference: |
| 252 |
! |
| 253 |
! Conte and de Boor, |
| 254 |
! Algorithm PCUBIC, |
| 255 |
! Elementary Numerical Analysis, |
| 256 |
! 1973, page 234. |
| 257 |
! |
| 258 |
! Parameters: |
| 259 |
! |
| 260 |
implicit none |
| 261 |
|
| 262 |
type (cubicSpline), intent(in) :: cs |
| 263 |
real( kind = DP ), intent(in) :: xval |
| 264 |
real( kind = DP ), intent(out) :: yval |
| 265 |
real( kind = DP ) :: dx |
| 266 |
integer :: i, j |
| 267 |
! |
| 268 |
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
| 269 |
! or is nearest to xval. |
| 270 |
! |
| 271 |
j = cs%np - 1 |
| 272 |
|
| 273 |
do i = 1, cs%np - 2 |
| 274 |
|
| 275 |
if ( xval < cs%x(i+1) ) then |
| 276 |
j = i |
| 277 |
exit |
| 278 |
end if |
| 279 |
|
| 280 |
end do |
| 281 |
! |
| 282 |
! Evaluate the cubic polynomial. |
| 283 |
! |
| 284 |
dx = xval - cs%x(j) |
| 285 |
|
| 286 |
yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) |
| 287 |
|
| 288 |
return |
| 289 |
end subroutine lookup_nonuniform_spline |
| 290 |
|
| 291 |
subroutine lookup_uniform_spline(cs, xval, yval) |
| 292 |
|
| 293 |
!************************************************************************* |
| 294 |
! |
| 295 |
! lookup_uniform_spline evaluates a piecewise cubic Hermite interpolant. |
| 296 |
! |
| 297 |
! Discussion: |
| 298 |
! |
| 299 |
! newSpline must be called first, to set up the |
| 300 |
! spline data from the raw function and derivative data. |
| 301 |
! |
| 302 |
! Modified: |
| 303 |
! |
| 304 |
! 06 April 1999 |
| 305 |
! |
| 306 |
! Reference: |
| 307 |
! |
| 308 |
! Conte and de Boor, |
| 309 |
! Algorithm PCUBIC, |
| 310 |
! Elementary Numerical Analysis, |
| 311 |
! 1973, page 234. |
| 312 |
! |
| 313 |
! Parameters: |
| 314 |
! |
| 315 |
implicit none |
| 316 |
|
| 317 |
type (cubicSpline), intent(in) :: cs |
| 318 |
real( kind = DP ), intent(in) :: xval |
| 319 |
real( kind = DP ), intent(out) :: yval |
| 320 |
real( kind = DP ) :: dx |
| 321 |
integer :: i, j |
| 322 |
! |
| 323 |
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
| 324 |
! or is nearest to xval. |
| 325 |
|
| 326 |
j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dx_i) + 1)) |
| 327 |
|
| 328 |
dx = xval - cs%x(j) |
| 329 |
|
| 330 |
yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) |
| 331 |
|
| 332 |
return |
| 333 |
end subroutine lookup_uniform_spline |
| 334 |
|
| 335 |
end module INTERPOLATION |