| 1 | /* | 
| 2 | * Copyright (C) 2000-2009  The Open Molecular Dynamics Engine (OpenMD) project | 
| 3 | * | 
| 4 | * Contact: gezelter@openscience.org | 
| 5 | * | 
| 6 | * This program is free software; you can redistribute it and/or | 
| 7 | * modify it under the terms of the GNU Lesser General Public License | 
| 8 | * as published by the Free Software Foundation; either version 2.1 | 
| 9 | * of the License, or (at your option) any later version. | 
| 10 | * All we ask is that proper credit is given for our work, which includes | 
| 11 | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | * of your source code files, and to any copyright notice that you may distribute | 
| 13 | * with programs based on this work. | 
| 14 | * | 
| 15 | * This program is distributed in the hope that it will be useful, | 
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | * GNU Lesser General Public License for more details. | 
| 19 | * | 
| 20 | * You should have received a copy of the GNU Lesser General Public License | 
| 21 | * along with this program; if not, write to the Free Software | 
| 22 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 23 | * | 
| 24 | */ | 
| 25 |  | 
| 26 | #include "primitives/RigidBody.hpp" | 
| 27 |  | 
| 28 | namespace OpenMD { | 
| 29 |  | 
| 30 | RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData){ | 
| 31 |  | 
| 32 | } | 
| 33 |  | 
| 34 | void RigidBody::setPrevA(const RotMat3x3d& a) { | 
| 35 | ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 36 | ((snapshotMan_->getPrevSnapshot())->*storage_).unitVector[localIndex_] = a.inverse() * sU_.getColumn(2); | 
| 37 |  | 
| 38 | std::vector<Atom*>::iterator i; | 
| 39 | for (i = atoms_.begin(); i != atoms_.end(); ++i) { | 
| 40 | if ((*i)->isDirectional()) { | 
| 41 | (*i)->setPrevA(a * (*i)->getPrevA()); | 
| 42 | } | 
| 43 | } | 
| 44 |  | 
| 45 | } | 
| 46 |  | 
| 47 |  | 
| 48 | void RigidBody::setA(const RotMat3x3d& a) { | 
| 49 | ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 50 | ((snapshotMan_->getCurrentSnapshot())->*storage_).unitVector[localIndex_] = a.inverse() * sU_.getColumn(2); | 
| 51 |  | 
| 52 | std::vector<Atom*>::iterator i; | 
| 53 | for (i = atoms_.begin(); i != atoms_.end(); ++i) { | 
| 54 | if ((*i)->isDirectional()) { | 
| 55 | (*i)->setA(a * (*i)->getA()); | 
| 56 | } | 
| 57 | } | 
| 58 | } | 
| 59 |  | 
| 60 | void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { | 
| 61 | ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; | 
| 62 | ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).unitVector[localIndex_] = a.inverse() * sU_.getColumn(2); | 
| 63 |  | 
| 64 | std::vector<Atom*>::iterator i; | 
| 65 | for (i = atoms_.begin(); i != atoms_.end(); ++i) { | 
| 66 | if ((*i)->isDirectional()) { | 
| 67 | (*i)->setA(a * (*i)->getA(snapshotNo), snapshotNo); | 
| 68 | } | 
| 69 | } | 
| 70 |  | 
| 71 | } | 
| 72 |  | 
| 73 | void  DirectionalAtom::setUnitFrameFromEuler(double phi, double theta, double psi) { | 
| 74 | sU_.setupRotMat(phi,theta,psi); | 
| 75 | } | 
| 76 |  | 
| 77 | Mat3x3d RigidBody::getI() { | 
| 78 | return inertiaTensor_; | 
| 79 | } | 
| 80 |  | 
| 81 | std::vector<double> RigidBody::getGrad() { | 
| 82 | vector<double> grad(6, 0.0); | 
| 83 | Vector3d force; | 
| 84 | Vector3d torque; | 
| 85 | Vector3d myEuler; | 
| 86 | double phi, theta, psi; | 
| 87 | double cphi, sphi, ctheta, stheta; | 
| 88 | Vector3d ephi; | 
| 89 | Vector3d etheta; | 
| 90 | Vector3d epsi; | 
| 91 |  | 
| 92 | force = getFrc(); | 
| 93 | torque =getTrq(); | 
| 94 | myEuler = getA().toEulerAngles(); | 
| 95 |  | 
| 96 | phi = myEuler[0]; | 
| 97 | theta = myEuler[1]; | 
| 98 | psi = myEuler[2]; | 
| 99 |  | 
| 100 | cphi = cos(phi); | 
| 101 | sphi = sin(phi); | 
| 102 | ctheta = cos(theta); | 
| 103 | stheta = sin(theta); | 
| 104 |  | 
| 105 | // get unit vectors along the phi, theta and psi rotation axes | 
| 106 |  | 
| 107 | ephi[0] = 0.0; | 
| 108 | ephi[1] = 0.0; | 
| 109 | ephi[2] = 1.0; | 
| 110 |  | 
| 111 | etheta[0] = cphi; | 
| 112 | etheta[1] = sphi; | 
| 113 | etheta[2] = 0.0; | 
| 114 |  | 
| 115 | epsi[0] = stheta * cphi; | 
| 116 | epsi[1] = stheta * sphi; | 
| 117 | epsi[2] = ctheta; | 
| 118 |  | 
| 119 | //gradient is equal to -force | 
| 120 | for (int j = 0 ; j<3; j++) | 
| 121 | grad[j] = -force[j]; | 
| 122 |  | 
| 123 | for (int j = 0; j < 3; j++ ) { | 
| 124 |  | 
| 125 | grad[3] += torque[j]*ephi[j]; | 
| 126 | grad[4] += torque[j]*etheta[j]; | 
| 127 | grad[5] += torque[j]*epsi[j]; | 
| 128 |  | 
| 129 | } | 
| 130 |  | 
| 131 | return grad; | 
| 132 | } | 
| 133 |  | 
| 134 | void RigidBody::accept(BaseVisitor* v) { | 
| 135 | v->visit(this); | 
| 136 | } | 
| 137 |  | 
| 138 | void  RigidBody::calcRefCoords() { | 
| 139 | /* | 
| 140 | double mtmp; | 
| 141 | vec3 apos; | 
| 142 | double refCOM[3]; | 
| 143 | vec3 ptmp; | 
| 144 | double Itmp[3][3]; | 
| 145 | double evals[3]; | 
| 146 | double evects[3][3]; | 
| 147 | double r, r2, len; | 
| 148 |  | 
| 149 | // First, find the center of mass: | 
| 150 |  | 
| 151 | mass = 0.0; | 
| 152 | for (j=0; j<3; j++) | 
| 153 | refCOM[j] = 0.0; | 
| 154 |  | 
| 155 | for (i = 0; i < atoms_.size(); i++) { | 
| 156 | mtmp = atoms_[i]->getMass(); | 
| 157 | mass += mtmp; | 
| 158 |  | 
| 159 | apos = refCoords[i]; | 
| 160 |  | 
| 161 | for(j = 0; j < 3; j++) { | 
| 162 | refCOM[j] += apos[j]*mtmp; | 
| 163 | } | 
| 164 | } | 
| 165 |  | 
| 166 | for(j = 0; j < 3; j++) | 
| 167 | refCOM[j] /= mass; | 
| 168 |  | 
| 169 | // Next, move the origin of the reference coordinate system to the COM: | 
| 170 |  | 
| 171 | for (i = 0; i < atoms_.size(); i++) { | 
| 172 | apos = refCoords[i]; | 
| 173 | for (j=0; j < 3; j++) { | 
| 174 | apos[j] = apos[j] - refCOM[j]; | 
| 175 | } | 
| 176 | refCoords[i] = apos; | 
| 177 | } | 
| 178 |  | 
| 179 | // Moment of Inertia calculation | 
| 180 |  | 
| 181 | for (i = 0; i < 3; i++) | 
| 182 | for (j = 0; j < 3; j++) | 
| 183 | Itmp[i][j] = 0.0; | 
| 184 |  | 
| 185 | for (it = 0; it < atoms_.size(); it++) { | 
| 186 |  | 
| 187 | mtmp = atoms_[it]->getMass(); | 
| 188 | ptmp = refCoords[it]; | 
| 189 | r= norm3(ptmp.vec); | 
| 190 | r2 = r*r; | 
| 191 |  | 
| 192 | for (i = 0; i < 3; i++) { | 
| 193 | for (j = 0; j < 3; j++) { | 
| 194 |  | 
| 195 | if (i==j) Itmp[i][j] += mtmp * r2; | 
| 196 |  | 
| 197 | Itmp[i][j] -= mtmp * ptmp.vec[i]*ptmp.vec[j]; | 
| 198 | } | 
| 199 | } | 
| 200 | } | 
| 201 |  | 
| 202 | diagonalize3x3(Itmp, evals, sU); | 
| 203 |  | 
| 204 | // zero out I and then fill the diagonals with the moments of inertia: | 
| 205 |  | 
| 206 | n_linear_coords = 0; | 
| 207 |  | 
| 208 | for (i = 0; i < 3; i++) { | 
| 209 | for (j = 0; j < 3; j++) { | 
| 210 | I[i][j] = 0.0; | 
| 211 | } | 
| 212 | I[i][i] = evals[i]; | 
| 213 |  | 
| 214 | if (fabs(evals[i]) < momIntTol) { | 
| 215 | is_linear = true; | 
| 216 | n_linear_coords++; | 
| 217 | linear_axis = i; | 
| 218 | } | 
| 219 | } | 
| 220 |  | 
| 221 | if (n_linear_coords > 1) { | 
| 222 | sprintf( painCave.errMsg, | 
| 223 | "RigidBody error.\n" | 
| 224 | "\tOpenMD found more than one axis in this rigid body with a vanishing \n" | 
| 225 | "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 226 | "\t 1) Only one atom was specified, or \n" | 
| 227 | "\t 2) All atoms were specified at the same location, or\n" | 
| 228 | "\t 3) The programmers did something stupid.\n" | 
| 229 | "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n" | 
| 230 | ); | 
| 231 | painCave.isFatal = 1; | 
| 232 | simError(); | 
| 233 | } | 
| 234 |  | 
| 235 | // renormalize column vectors: | 
| 236 |  | 
| 237 | for (i=0; i < 3; i++) { | 
| 238 | len = 0.0; | 
| 239 | for (j = 0; j < 3; j++) { | 
| 240 | len += sU[i][j]*sU[i][j]; | 
| 241 | } | 
| 242 | len = sqrt(len); | 
| 243 | for (j = 0; j < 3; j++) { | 
| 244 | sU[i][j] /= len; | 
| 245 | } | 
| 246 | } | 
| 247 | */ | 
| 248 | } | 
| 249 |  | 
| 250 | void  RigidBody::calcForcesAndTorques() { | 
| 251 | unsigned int i; | 
| 252 | unsigned int j; | 
| 253 | //Vector3d apos; | 
| 254 | Vector3d afrc; | 
| 255 | Vector3d atrq; | 
| 256 | Vector3d rpos; | 
| 257 | Vector3d frc; | 
| 258 | Vector3d trq; | 
| 259 | //Vector3d pos; | 
| 260 |  | 
| 261 | zeroForces(); | 
| 262 |  | 
| 263 | //pos = getPos(); | 
| 264 | frc = getFrc(); | 
| 265 | trq = getTrq(); | 
| 266 |  | 
| 267 | for (i = 0; i < atoms_.size(); i++) { | 
| 268 |  | 
| 269 | afrc = atoms_[i]->getFrc(); | 
| 270 |  | 
| 271 | //apos = atoms_[i]->getPos(apos); | 
| 272 | //rpos = apos - pos; | 
| 273 | rpos = refCoords_[i]; | 
| 274 |  | 
| 275 | frc += afrc; | 
| 276 |  | 
| 277 | trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 278 | trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 279 | trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 280 |  | 
| 281 | // If the atom has a torque associated with it, then we also need to | 
| 282 | // migrate the torques onto the center of mass: | 
| 283 |  | 
| 284 | if (atoms_[i]->isDirectional()) { | 
| 285 | atrq = atoms_[i]->getTrq(); | 
| 286 | trq += atrq; | 
| 287 | } | 
| 288 |  | 
| 289 | } | 
| 290 |  | 
| 291 | setFrc(frc); | 
| 292 | setTrq(trq); | 
| 293 |  | 
| 294 | } | 
| 295 |  | 
| 296 | void  RigidBody::updateAtoms() { | 
| 297 | unsigned int i; | 
| 298 | unsigned int j; | 
| 299 | Vector3d ref; | 
| 300 | Vector3d apos; | 
| 301 | DirectionalAtom* dAtom; | 
| 302 | Vector3d pos = getPos(); | 
| 303 | RotMat3x3d A = getA(); | 
| 304 |  | 
| 305 | for (i = 0; i < atoms_.size(); i++) { | 
| 306 |  | 
| 307 | ref = body2Lab(refCoords_[i]); | 
| 308 |  | 
| 309 | apos = pos + ref; | 
| 310 |  | 
| 311 | atoms_[i]->setPos(apos); | 
| 312 |  | 
| 313 | if (atoms_[i]->isDirectional()) { | 
| 314 |  | 
| 315 | dAtom = (DirectionalAtom *) atoms_[i]; | 
| 316 | dAtom->rotateBy( A ); | 
| 317 | } | 
| 318 |  | 
| 319 | } | 
| 320 |  | 
| 321 | } | 
| 322 |  | 
| 323 |  | 
| 324 | bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { | 
| 325 | if (index < atoms_.size()) { | 
| 326 |  | 
| 327 | Vector3d ref = body2Lab(refCoords_[index]); | 
| 328 | pos = getPos() + ref; | 
| 329 | return true; | 
| 330 | } else { | 
| 331 | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 332 | << atoms_.size() << "atoms" << std::endl; | 
| 333 | return false; | 
| 334 | } | 
| 335 | } | 
| 336 |  | 
| 337 | bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { | 
| 338 | std::vector<Atom*>::iterator i; | 
| 339 | i = find(atoms_.begin(), atoms_.end(), atom); | 
| 340 | if (i != atoms_.end()) { | 
| 341 | //RigidBody class makes sure refCoords_ and atoms_ match each other | 
| 342 | Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); | 
| 343 | pos = getPos() + ref; | 
| 344 | return true; | 
| 345 | } else { | 
| 346 | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 347 | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 348 | return false; | 
| 349 | } | 
| 350 | } | 
| 351 | bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { | 
| 352 |  | 
| 353 | //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ | 
| 354 |  | 
| 355 | if (index < atoms_.size()) { | 
| 356 |  | 
| 357 | Vector3d velRot; | 
| 358 | Mat3x3d skewMat;; | 
| 359 | Vector3d ref = refCoords_[index]; | 
| 360 | Vector3d ji = getJ(); | 
| 361 | Mat3x3d I =  getI(); | 
| 362 |  | 
| 363 | skewMat(0, 0) =0; | 
| 364 | skewMat(0, 1) = ji[2] /I(2, 2); | 
| 365 | skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 366 |  | 
| 367 | skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 368 | skewMat(1, 1) = 0; | 
| 369 | skewMat(1, 2) = ji[0]/I(0, 0); | 
| 370 |  | 
| 371 | skewMat(2, 0) =ji[1] /I(1, 1); | 
| 372 | skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 373 | skewMat(2, 2) = 0; | 
| 374 |  | 
| 375 | velRot = (getA() * skewMat).transpose() * ref; | 
| 376 |  | 
| 377 | vel =getVel() + velRot; | 
| 378 | return true; | 
| 379 |  | 
| 380 | } else { | 
| 381 | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 382 | << atoms_.size() << "atoms" << std::endl; | 
| 383 | return false; | 
| 384 | } | 
| 385 | } | 
| 386 |  | 
| 387 | bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { | 
| 388 |  | 
| 389 | std::vector<Atom*>::iterator i; | 
| 390 | i = find(atoms_.begin(), atoms_.end(), atom); | 
| 391 | if (i != atoms_.end()) { | 
| 392 | return getAtomVel(vel, i - atoms_.begin()); | 
| 393 | } else { | 
| 394 | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 395 | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 396 | return false; | 
| 397 | } | 
| 398 | } | 
| 399 |  | 
| 400 | bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { | 
| 401 | if (index < atoms_.size()) { | 
| 402 |  | 
| 403 | coor = refCoords_[index]; | 
| 404 | return true; | 
| 405 | } else { | 
| 406 | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 407 | << atoms_.size() << "atoms" << std::endl; | 
| 408 | return false; | 
| 409 | } | 
| 410 |  | 
| 411 | } | 
| 412 |  | 
| 413 | bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { | 
| 414 | std::vector<Atom*>::iterator i; | 
| 415 | i = find(atoms_.begin(), atoms_.end(), atom); | 
| 416 | if (i != atoms_.end()) { | 
| 417 | //RigidBody class makes sure refCoords_ and atoms_ match each other | 
| 418 | coor = refCoords_[i - atoms_.begin()]; | 
| 419 | return true; | 
| 420 | } else { | 
| 421 | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 422 | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 423 | return false; | 
| 424 | } | 
| 425 |  | 
| 426 | } | 
| 427 |  | 
| 428 | } | 
| 429 |  |