| 4 |
|
CPPUNIT_TEST_SUITE_REGISTRATION( SquareMatrix3TestCase ); |
| 5 |
|
|
| 6 |
|
|
| 7 |
< |
void SquareMatrix3TestCase::setUp(){ |
| 8 |
< |
} |
| 7 |
> |
void SquareMatrix3TestCase::testSetupRotationMatrix(){ |
| 8 |
> |
//test setupRotationMatrix by quaternion |
| 9 |
|
|
| 10 |
< |
void SquareMatrix3TestCase::tearDown(){ |
| 11 |
< |
} |
| 10 |
> |
RotMat3x3d m1L(0.0, -0.6, 0.0, -0.8); |
| 11 |
> |
RotMat3x3d m1R; |
| 12 |
> |
m1R(0,0) = -0.28; |
| 13 |
> |
m1R(0,1) = 0; |
| 14 |
> |
m1R(0,2) = 0.96; |
| 15 |
> |
m1R(1,0) = 0.0; |
| 16 |
> |
m1R(1,1) = -1.0; |
| 17 |
> |
m1R(1,2) = 0.0; |
| 18 |
> |
m1R(2,0) = 0.96; |
| 19 |
> |
m1R(2,1) = 0; |
| 20 |
> |
m1R(2,2) = 0.28; |
| 21 |
|
|
| 22 |
< |
void SquareMatrix3TestCase::testConstructors(){ |
| 14 |
< |
} |
| 22 |
> |
CPPUNIT_ASSERT(m1L == m1R); |
| 23 |
|
|
| 24 |
< |
void SquareMatrix3TestCase::testArithmetic(){ |
| 25 |
< |
} |
| 24 |
> |
Quat4d q1(0.0, -0.6, 0.0, -0.8); |
| 25 |
> |
RotMat3x3d m2L(q1); |
| 26 |
> |
RotMat3x3d m2R(m1R); |
| 27 |
> |
CPPUNIT_ASSERT(m2L == m2R); |
| 28 |
> |
|
| 29 |
> |
//test setupRotationMatrix by euler angles |
| 30 |
> |
Vector3d v1(0.0, M_PI/2.0, 0.0); |
| 31 |
> |
RotMat3x3d m3L(v1); |
| 32 |
> |
RotMat3x3d m3R; |
| 33 |
> |
m3R(0,0) = 1.0; |
| 34 |
> |
m3R(0,1) = 0; |
| 35 |
> |
m3R(0,2) = 0.0; |
| 36 |
> |
m3R(1,0) = 0.0; |
| 37 |
> |
m3R(1,1) = 0.0; |
| 38 |
> |
m3R(1,2) = 1.0; |
| 39 |
> |
m3R(2,0) = 0.0; |
| 40 |
> |
m3R(2,1) = -1.0; |
| 41 |
> |
m3R(2,2) = 0.0; |
| 42 |
> |
CPPUNIT_ASSERT( m3L == m3R); |
| 43 |
|
|
| 44 |
< |
void SquareMatrix3TestCase::testOperators(){ |
| 45 |
< |
} |
| 44 |
> |
RotMat3x3d m4L(0.0, M_PI/2.0, 0.0); |
| 45 |
> |
RotMat3x3d m4R = m3R; |
| 46 |
> |
CPPUNIT_ASSERT( m4L == m4R); |
| 47 |
|
|
| 48 |
< |
void SquareMatrix3TestCase::testAccessEntries(){ |
| 48 |
> |
Vector3d v2(M_PI/4.0, M_PI/4.0, M_PI/4.0); |
| 49 |
> |
RotMat3x3d m5L(v2); |
| 50 |
> |
RotMat3x3d m5R; |
| 51 |
> |
double root2Over4 = sqrt(2)/4.0; |
| 52 |
> |
m5R(0,0) = 0.5 - root2Over4; |
| 53 |
> |
m5R(0,1) = 0.5 + root2Over4; |
| 54 |
> |
m5R(0,2) = 0.5; |
| 55 |
> |
m5R(1,0) = -0.5 -root2Over4; |
| 56 |
> |
m5R(1,1) = -0.5 + root2Over4; |
| 57 |
> |
m5R(1,2) = 0.5; |
| 58 |
> |
m5R(2,0) = 0.5; |
| 59 |
> |
m5R(2,1) = -0.5; |
| 60 |
> |
m5R(2,2) = sqrt(2)/2.0; |
| 61 |
> |
CPPUNIT_ASSERT( m5L == m5R); |
| 62 |
> |
|
| 63 |
> |
|
| 64 |
|
} |
| 65 |
|
|
| 66 |
< |
void SquareMatrix3TestCase::testOtherTemplateFunctions(){ |
| 66 |
> |
void SquareMatrix3TestCase::testOtherMemberFunctions() { |
| 67 |
> |
//test inverse |
| 68 |
> |
RotMat3x3d ident = RotMat3x3d::identity(); |
| 69 |
> |
CPPUNIT_ASSERT(ident == ident.inverse()); |
| 70 |
|
|
| 71 |
+ |
RotMat3x3d m1; |
| 72 |
+ |
m1(0,0) = 1.0; |
| 73 |
+ |
m1(0,1) = 5.0; |
| 74 |
+ |
m1(0,2) = 3.0; |
| 75 |
+ |
m1(1,0) = 3.0; |
| 76 |
+ |
m1(1,1) = 1.0; |
| 77 |
+ |
m1(1,2) = 2.0; |
| 78 |
+ |
m1(2,0) = 0.0; |
| 79 |
+ |
m1(2,1) = -21.0; |
| 80 |
+ |
m1(2,2) = -81.0; |
| 81 |
+ |
|
| 82 |
+ |
CPPUNIT_ASSERT(m1 == (m1.inverse()).inverse()); |
| 83 |
+ |
|
| 84 |
+ |
//test determinant |
| 85 |
+ |
RotMat3x3d m2; |
| 86 |
+ |
m2(0,0) = 1.0; |
| 87 |
+ |
m2(0,1) = 5.0; |
| 88 |
+ |
m2(0,2) = 3.0; |
| 89 |
+ |
m2(1,0) = 6.0; |
| 90 |
+ |
m2(1,1) = 0.0; |
| 91 |
+ |
m2(1,2) = 2.0; |
| 92 |
+ |
m2(2,0) = 0.0; |
| 93 |
+ |
m2(2,1) = -1.0; |
| 94 |
+ |
m2(2,2) = 1.0; |
| 95 |
+ |
CPPUNIT_ASSERT_DOUBLES_EQUAL(m2.determinant(), -46.0, oopse::epsilon); |
| 96 |
|
} |
| 97 |
+ |
void SquareMatrix3TestCase::testTransformation(){ |
| 98 |
|
|
| 99 |
+ |
//test toQuaternion |
| 100 |
+ |
RotMat3x3d m1; |
| 101 |
+ |
Quat4d q1L; |
| 102 |
+ |
Quat4d q1R(0.0, -0.6, 0.0, -0.8); |
| 103 |
+ |
m1(0,0) = -0.28; |
| 104 |
+ |
m1(0,1) = 0; |
| 105 |
+ |
m1(0,2) = 0.96; |
| 106 |
+ |
m1(1,0) = 0.0; |
| 107 |
+ |
m1(1,1) = -1.0; |
| 108 |
+ |
m1(1,2) = 0.0; |
| 109 |
+ |
m1(2,0) = 0.96; |
| 110 |
+ |
m1(2,1) = 0; |
| 111 |
+ |
m1(2,2) = 0.28; |
| 112 |
+ |
q1L = m1.toQuaternion(); |
| 113 |
+ |
//CPPUNIT_ASSERT( q1L == q1R); |
| 114 |
+ |
|
| 115 |
+ |
RotMat3x3d m2; |
| 116 |
+ |
Quat4d q2L(0.4, -0.6, 0.3, -0.8); |
| 117 |
+ |
Quat4d q2R; |
| 118 |
+ |
q2L.normalize(); |
| 119 |
+ |
|
| 120 |
+ |
m2 = q2L.toRotationMatrix3(); |
| 121 |
+ |
q2R = m2.toQuaternion(); |
| 122 |
+ |
CPPUNIT_ASSERT( q2L == q2R); |
| 123 |
+ |
|
| 124 |
+ |
//test toEuler |
| 125 |
+ |
Vector3d v1L; |
| 126 |
+ |
Vector3d v1R(M_PI/4.0, M_PI/4.0, M_PI/4.0); |
| 127 |
+ |
RotMat3x3d m3; |
| 128 |
+ |
double root2Over4 = sqrt(2)/4.0; |
| 129 |
+ |
m3(0,0) = 0.5 - root2Over4; |
| 130 |
+ |
m3(0,1) = 0.5 + root2Over4; |
| 131 |
+ |
m3(0,2) = 0.5; |
| 132 |
+ |
m3(1,0) = -0.5 -root2Over4; |
| 133 |
+ |
m3(1,1) = -0.5 + root2Over4; |
| 134 |
+ |
m3(1,2) = 0.5; |
| 135 |
+ |
m3(2,0) = 0.5; |
| 136 |
+ |
m3(2,1) = -0.5; |
| 137 |
+ |
m3(2,2) = sqrt(2)/2.0; |
| 138 |
+ |
v1L = m3.toEulerAngles(); |
| 139 |
+ |
CPPUNIT_ASSERT( v1L == v1R); |
| 140 |
+ |
|
| 141 |
+ |
//test diagonalize |
| 142 |
+ |
|
| 143 |
+ |
RotMat3x3d m4; |
| 144 |
+ |
RotMat3x3d a; |
| 145 |
+ |
Vector3d w; |
| 146 |
+ |
RotMat3x3d m5L; |
| 147 |
+ |
RotMat3x3d m5R; |
| 148 |
+ |
m4(0, 0) = 3.0; |
| 149 |
+ |
m4(0, 1) = 4.0; |
| 150 |
+ |
m4(0, 2) = 5.0; |
| 151 |
+ |
m4(1, 0) = 4.0; |
| 152 |
+ |
m4(1, 1) = 5.0; |
| 153 |
+ |
m4(1, 2) = 6.0; |
| 154 |
+ |
m4(2, 0) = 5.0; |
| 155 |
+ |
m4(2, 1) = 6.0; |
| 156 |
+ |
m4(2, 2) = 7.0; |
| 157 |
+ |
a = m4; |
| 158 |
+ |
|
| 159 |
+ |
RotMat3x3d::diagonalize(a, w, m5L); |
| 160 |
+ |
|
| 161 |
+ |
m5R(0, 0) = 0.789067 ; |
| 162 |
+ |
m5R(0, 1) = -0.408248; |
| 163 |
+ |
m5R(0, 2) = 0.459028; |
| 164 |
+ |
m5R(1, 0) = 0.090750; |
| 165 |
+ |
m5R(1, 1) = 0.816497; |
| 166 |
+ |
m5R(1, 2) = 0.570173; |
| 167 |
+ |
m5R(2, 0) = -0.607567; |
| 168 |
+ |
m5R(2, 1) = -0.408248 ; |
| 169 |
+ |
m5R(2, 2) = 0.681319; |
| 170 |
+ |
|
| 171 |
+ |
CPPUNIT_ASSERT(m5L == m5R); |
| 172 |
+ |
} |