1 |
#include <math.h> |
2 |
#include "Atom.hpp" |
3 |
#include "SRI.hpp" |
4 |
#include "AbstractClasses.hpp" |
5 |
#include "SimInfo.hpp" |
6 |
#include "ForceFields.hpp" |
7 |
#include "Thermo.hpp" |
8 |
#include "ReadWrite.hpp" |
9 |
#include "Integrator.hpp" |
10 |
#include "simError.h" |
11 |
|
12 |
#ifdef IS_MPI |
13 |
#include "mpiSimulation.hpp" |
14 |
#endif |
15 |
|
16 |
// Basic non-isotropic thermostating and barostating via the Melchionna |
17 |
// modification of the Hoover algorithm: |
18 |
// |
19 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
20 |
// Molec. Phys., 78, 533. |
21 |
// |
22 |
// and |
23 |
// |
24 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
25 |
|
26 |
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 |
Integrator( theInfo, the_ff ) |
28 |
{ |
29 |
GenericData* data; |
30 |
DoubleArrayData * etaValue; |
31 |
vector<double> etaArray; |
32 |
int i,j; |
33 |
|
34 |
for(i = 0; i < 3; i++){ |
35 |
for (j = 0; j < 3; j++){ |
36 |
|
37 |
eta[i][j] = 0.0; |
38 |
oldEta[i][j] = 0.0; |
39 |
} |
40 |
} |
41 |
|
42 |
// retrieve eta array from simInfo if it exists |
43 |
data = info->getProperty(ETAVALUE_ID); |
44 |
if(data){ |
45 |
etaValue = dynamic_cast<DoubleArrayData*>(data); |
46 |
|
47 |
if(etaValue){ |
48 |
etaArray = etaValue->getData(); |
49 |
|
50 |
for(i = 0; i < 3; i++){ |
51 |
for (j = 0; j < 3; j++){ |
52 |
eta[i][j] = etaArray[3*i+j]; |
53 |
oldEta[i][j] = eta[i][j]; |
54 |
} |
55 |
} |
56 |
|
57 |
} |
58 |
} |
59 |
|
60 |
} |
61 |
|
62 |
NPTf::~NPTf() { |
63 |
|
64 |
// empty for now |
65 |
} |
66 |
|
67 |
void NPTf::resetIntegrator() { |
68 |
|
69 |
int i, j; |
70 |
|
71 |
for(i = 0; i < 3; i++) |
72 |
for (j = 0; j < 3; j++) |
73 |
eta[i][j] = 0.0; |
74 |
|
75 |
Integrator::resetIntegrator(); |
76 |
} |
77 |
|
78 |
void NPTf::evolveEtaA() { |
79 |
|
80 |
int i, j; |
81 |
|
82 |
for(i = 0; i < 3; i ++){ |
83 |
for(j = 0; j < 3; j++){ |
84 |
if( i == j) |
85 |
eta[i][j] += dt2 * instaVol * |
86 |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
87 |
else |
88 |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
89 |
} |
90 |
} |
91 |
|
92 |
for(i = 0; i < 3; i++) |
93 |
for (j = 0; j < 3; j++) |
94 |
oldEta[i][j] = eta[i][j]; |
95 |
} |
96 |
|
97 |
void NPTf::evolveEtaB() { |
98 |
|
99 |
int i,j; |
100 |
|
101 |
for(i = 0; i < 3; i++) |
102 |
for (j = 0; j < 3; j++) |
103 |
prevEta[i][j] = eta[i][j]; |
104 |
|
105 |
for(i = 0; i < 3; i ++){ |
106 |
for(j = 0; j < 3; j++){ |
107 |
if( i == j) { |
108 |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
109 |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
110 |
} else { |
111 |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
112 |
} |
113 |
} |
114 |
} |
115 |
} |
116 |
|
117 |
void NPTf::getVelScaleA(double sc[3], double vel[3]) { |
118 |
int i,j; |
119 |
double vScale[3][3]; |
120 |
|
121 |
for (i = 0; i < 3; i++ ) { |
122 |
for (j = 0; j < 3; j++ ) { |
123 |
vScale[i][j] = eta[i][j]; |
124 |
|
125 |
if (i == j) { |
126 |
vScale[i][j] += chi; |
127 |
} |
128 |
} |
129 |
} |
130 |
|
131 |
info->matVecMul3( vScale, vel, sc ); |
132 |
} |
133 |
|
134 |
void NPTf::getVelScaleB(double sc[3], int index ){ |
135 |
int i,j; |
136 |
double myVel[3]; |
137 |
double vScale[3][3]; |
138 |
|
139 |
for (i = 0; i < 3; i++ ) { |
140 |
for (j = 0; j < 3; j++ ) { |
141 |
vScale[i][j] = eta[i][j]; |
142 |
|
143 |
if (i == j) { |
144 |
vScale[i][j] += chi; |
145 |
} |
146 |
} |
147 |
} |
148 |
|
149 |
for (j = 0; j < 3; j++) |
150 |
myVel[j] = oldVel[3*index + j]; |
151 |
|
152 |
info->matVecMul3( vScale, myVel, sc ); |
153 |
} |
154 |
|
155 |
void NPTf::getPosScale(double pos[3], double COM[3], |
156 |
int index, double sc[3]){ |
157 |
int j; |
158 |
double rj[3]; |
159 |
|
160 |
for(j=0; j<3; j++) |
161 |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
162 |
|
163 |
info->matVecMul3( eta, rj, sc ); |
164 |
} |
165 |
|
166 |
void NPTf::scaleSimBox( void ){ |
167 |
|
168 |
int i,j,k; |
169 |
double scaleMat[3][3]; |
170 |
double eta2ij; |
171 |
double bigScale, smallScale, offDiagMax; |
172 |
double hm[3][3], hmnew[3][3]; |
173 |
|
174 |
|
175 |
|
176 |
// Scale the box after all the positions have been moved: |
177 |
|
178 |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
179 |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
180 |
|
181 |
bigScale = 1.0; |
182 |
smallScale = 1.0; |
183 |
offDiagMax = 0.0; |
184 |
|
185 |
for(i=0; i<3; i++){ |
186 |
for(j=0; j<3; j++){ |
187 |
|
188 |
// Calculate the matrix Product of the eta array (we only need |
189 |
// the ij element right now): |
190 |
|
191 |
eta2ij = 0.0; |
192 |
for(k=0; k<3; k++){ |
193 |
eta2ij += eta[i][k] * eta[k][j]; |
194 |
} |
195 |
|
196 |
scaleMat[i][j] = 0.0; |
197 |
// identity matrix (see above): |
198 |
if (i == j) scaleMat[i][j] = 1.0; |
199 |
// Taylor expansion for the exponential truncated at second order: |
200 |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
201 |
|
202 |
if (i != j) |
203 |
if (fabs(scaleMat[i][j]) > offDiagMax) |
204 |
offDiagMax = fabs(scaleMat[i][j]); |
205 |
} |
206 |
|
207 |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
208 |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
209 |
} |
210 |
|
211 |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
212 |
sprintf( painCave.errMsg, |
213 |
"NPTf error: Attempting a Box scaling of more than 10 percent.\n" |
214 |
" Check your tauBarostat, as it is probably too small!\n\n" |
215 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
216 |
" [%lf\t%lf\t%lf]\n" |
217 |
" [%lf\t%lf\t%lf]\n", |
218 |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
219 |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
220 |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
221 |
painCave.isFatal = 1; |
222 |
simError(); |
223 |
} else if (offDiagMax > 0.1) { |
224 |
sprintf( painCave.errMsg, |
225 |
"NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" |
226 |
" Check your tauBarostat, as it is probably too small!\n\n" |
227 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
228 |
" [%lf\t%lf\t%lf]\n" |
229 |
" [%lf\t%lf\t%lf]\n", |
230 |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
231 |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
232 |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
233 |
painCave.isFatal = 1; |
234 |
simError(); |
235 |
} else { |
236 |
info->getBoxM(hm); |
237 |
info->matMul3(hm, scaleMat, hmnew); |
238 |
info->setBoxM(hmnew); |
239 |
} |
240 |
} |
241 |
|
242 |
bool NPTf::etaConverged() { |
243 |
int i; |
244 |
double diffEta, sumEta; |
245 |
|
246 |
sumEta = 0; |
247 |
for(i = 0; i < 3; i++) |
248 |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
249 |
|
250 |
diffEta = sqrt( sumEta / 3.0 ); |
251 |
|
252 |
return ( diffEta <= etaTolerance ); |
253 |
} |
254 |
|
255 |
double NPTf::getConservedQuantity(void){ |
256 |
|
257 |
double conservedQuantity; |
258 |
double totalEnergy; |
259 |
double thermostat_kinetic; |
260 |
double thermostat_potential; |
261 |
double barostat_kinetic; |
262 |
double barostat_potential; |
263 |
double trEta; |
264 |
double a[3][3], b[3][3]; |
265 |
|
266 |
totalEnergy = tStats->getTotalE(); |
267 |
|
268 |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
269 |
(2.0 * eConvert); |
270 |
|
271 |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
272 |
|
273 |
info->transposeMat3(eta, a); |
274 |
info->matMul3(a, eta, b); |
275 |
trEta = info->matTrace3(b); |
276 |
|
277 |
barostat_kinetic = NkBT * tb2 * trEta / |
278 |
(2.0 * eConvert); |
279 |
|
280 |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
281 |
eConvert; |
282 |
|
283 |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
284 |
barostat_kinetic + barostat_potential; |
285 |
|
286 |
// cout.width(8); |
287 |
// cout.precision(8); |
288 |
|
289 |
// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
290 |
// "\t" << thermostat_potential << "\t" << barostat_kinetic << |
291 |
// "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
292 |
|
293 |
return conservedQuantity; |
294 |
|
295 |
} |
296 |
|
297 |
string NPTf::getAdditionalParameters(void){ |
298 |
string parameters; |
299 |
const int BUFFERSIZE = 2000; // size of the read buffer |
300 |
char buffer[BUFFERSIZE]; |
301 |
|
302 |
sprintf(buffer,"\t%lf\t%lf;", chi, integralOfChidt); |
303 |
parameters += buffer; |
304 |
|
305 |
for(int i = 0; i < 3; i++){ |
306 |
sprintf(buffer,"\t%lf\t%lf\t%lf;", eta[3*i], eta[3*i+1], eta[3*i+2]); |
307 |
parameters += buffer; |
308 |
} |
309 |
|
310 |
return parameters; |
311 |
|
312 |
} |