ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-2.0/src/UseTheForce/DUFF.cpp
Revision: 1783
Committed: Wed Nov 24 21:33:00 2004 UTC (19 years, 8 months ago) by tim
File size: 21250 byte(s)
Log Message:
UseTheForce get built

File Contents

# Content
1 /*
2 * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3 *
4 * Contact: oopse@oopse.org
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * as published by the Free Software Foundation; either version 2.1
9 * of the License, or (at your option) any later version.
10 * All we ask is that proper credit is given for our work, which includes
11 * - but is not limited to - adding the above copyright notice to the beginning
12 * of your source code files, and to any copyright notice that you may distribute
13 * with programs based on this work.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 */
25
26 #include "UseTheForce/DUFF.hpp"
27 #include "UseTheForce/DarkSide/lj_interface.h"
28 #include "UseTheForce/DarkSide/charge_interface.h"
29 #include "UseTheForce/DarkSide/dipole_interface.h"
30 #include "UseTheForce/DarkSide/sticky_interface.h"
31 #include "UseTheForce/ForceFieldFactory.hpp"
32 #include "io/DirectionalAtomTypesSectionParser.hpp"
33 #include "io/AtomTypesSectionParser.hpp"
34 #include "io/LennardJonesAtomTypesSectionParser.hpp"
35 #include "io/ElectrostaticAtomTypesSectionParser.hpp"
36 #include "io/EAMAtomTypesSectionParser.hpp"
37 #include "io/StickyAtomTypesSectionParser.hpp"
38 #include "io/BondTypesSectionParser.hpp"
39 #include "io/BendTypesSectionParser.hpp"
40 #include "io/TorsionTypesSectionParser.hpp"
41
42 namespace oopse {
43
44 //definition of createDUFF
45 ForceField* createDUFF() {
46 return new DUFF();
47 }
48
49 //register createDUFF to ForceFieldFactory
50 bool registerDUFFStatus = ForceFieldFactory::getInstance()->registerForceField("DUFF", createDUFF);
51
52 DUFF::DUFF(){
53
54 //the order of adding section parsers are important
55 //DirectionalAtomTypesSectionParser should be added before AtomTypesSectionParser Since
56 //These two section parsers will actually create "real" AtomTypes (AtomTypesSectionParser will create
57 //AtomType and DirectionalAtomTypesSectionParser will creat DirectionalAtomType which is a subclass
58 //of AtomType, therefore it should come first). Other AtomTypes Section Parser will not create the
59 //"real" AtomType, they only add and set some attribute of the AtomType. Thus their order are not
60 //important. AtomTypesSectionParser should be added before other atom type section parsers.
61 //Make sure they are added after DirectionalAtomTypesSectionParser and AtomTypesSectionParser.
62 //The order of BondTypesSectionParser, BendTypesSectionParser and TorsionTypesSectionParser are
63 //not important.
64 spMan_.push_back(new DirectionalAtomTypesSectionParser());
65 spMan_.push_back(new AtomTypesSectionParser());
66 spMan_.push_back(new LennardJonesAtomTypesSectionParser());
67 spMan_.push_back(new ElectrostaticAtomTypesSectionParser());
68 spMan_.push_back(new EAMAtomTypesSectionParser());
69 spMan_.push_back(new StickyAtomTypesSectionParser());
70 spMan_.push_back(new BondTypesSectionParser());
71 spMan_.push_back(new BendTypesSectionParser());
72 spMan_.push_back(new TorsionTypesSectionParser());
73
74 }
75
76 void DUFF::parse(const std::string& filename) {
77 ifstrstream* ffStream;
78 ffStream = openForceFieldFile(filename);
79
80 spMan_.parse(*ffStream, *this);
81
82 ForceField::AtomTypeContainer::MapTypeIterator i;
83 AtomType* at;
84
85 for (at = atomTypeCont_.beginType(i); at != NULL; at = atomTypeCont_.nextType(i)) {
86 at->makeFortranAtomType();
87 }
88
89 for (at = atomTypeCont_.beginType(i); at != NULL; at = atomTypeCont_.nextType(i)) {
90 at->complete();
91 }
92
93 }
94
95 /*
96 ParseState DUFF::getSection(const std::string& section) {
97 ParseState result;
98
99 switch(section) {
100 case "AtomTypes" :
101 result = DUFF::AtomTypeSection;
102 break;
103 case "DirectionalAtomTypes" :
104 result = DUFF::DirectionalAtomTypeSection;
105 break;
106
107 case "BondTypes" :
108 result = DUFF::BondTypeSection;
109 break;
110
111 case "BendTypes" :
112 result = DUFF::BendTypeSection;
113 break;
114
115 case "TorsionTypes" :
116 result = DUFF::TorsionTypeSection;
117 break;
118 default:
119 result = DUFF::UnknownSection;
120 }
121
122 return result;
123 }
124
125 void DUFF::parse(const std::string& filename) {
126 ifstrstream* ffStream;
127 ffStream = openForceFieldFile(filename);
128 const int bufferSize = 65535;
129 std::string line;
130 char buffer[bufferSize];
131 int lineNo = 0;
132 int atomIdent = getNAtomType() + 1; //atom's indent begins from 1 (since only fortran's array begins from 1)
133 ParseState currentSection = DUFF::UnknownSection;
134
135 while(ffStream.getline(buffer, bufferSize)){
136 ++lineNo;
137
138 line = trimSpaces(buffer);
139 //a line begins with "//" is comment
140 if ( line.empty() || (line.size() >= 2 && line[0] == '/' && line[1] == '/')) {
141 continue;
142 } else {
143
144 switch(currentSection) {
145 case DUFF::AtomTypeSection :
146 parseAtomType(line, lineNo, atomIdent);
147 break;
148
149 case DUFF::DirectionalAtomTypeSection :
150 parseDirectionalAtomType(line, lineNo);
151 break;
152
153 case DUFF::BondTypeSection :
154 parseBondType(line, lineNo);
155 break;
156
157 case DUFF::BendTypeSection :
158 parseBendType(line, lineNo);
159 break;
160
161 case DUFF::TorsionTypeSection :
162 parseTorsionType(line, lineNo);
163 break;
164
165 case DUFF::UnknownSection:
166 StringTokenizer tokenizer(line);
167
168 std::string keyword = tokenizer.nextToken();
169 std::string section = tokenizer.nextToken();
170
171 ParseState newSection = getSection(section);
172 if (keyword != "begin" || keyword != "end") {
173 std::cerr << "DUFF Parsing Error at line " << lineNo << ": " << line << std::endl;
174 } else if (keyword == "begin") {
175 if (newSection == DUFF::UnknownSection) {
176 std::cerr << "DUFF Parsing Error at line " << lineNo << ": " << line << std::endl;
177 } else {
178 //enter a new section
179 currentSection = newSection;
180 }
181
182 } else if (keyword == "end"){
183 if (currentSection == newSection) ) {
184 //leave a section
185 currentSection = DUFF::UnknownSection;
186 } else {
187 std::cerr << "DUFF Parsing Error at line " << lineNo << ": " << line << std::endl;
188 }
189
190 }
191 break;
192 default :
193
194 }
195
196 }
197 }
198
199 delete ffStream;
200 }
201
202 void DUFF::parseAtomType(const std::string& line, int lineNo, int& ident){
203 StringTokenizer tokenizer(line);
204 int nTokens = tokenizer.countTokens();
205
206 //in AtomTypeSection, a line at least contains 5 tokens
207 //atomTypeName, is Directional, isLJ, isCharge and mass
208 if (nTokens < 5) {
209
210 } else {
211
212 std::string atomTypeName = tokenizer.nextToken();
213 bool isDirectional = tokenizer.nextTokenAsBool();
214 bool isLJ = tokenizer.nextTokenAsBool();
215 bool isCharge = tokenizer.nextTokenAsBool();
216 double mass = tokenizer.nextTokenAsDouble();
217 double epsilon;
218 double sigma;
219 double charge;
220 nTokens -= 5;
221
222 //parse epsilon and sigma
223 if (isLJ) {
224 if (nTokens >= 2) {
225 epsilon = tokenizer.nextTokenAsDouble();
226 sigma = tokenizer.nextTokenAsDouble();
227 nTokens -= 2;
228 } else {
229
230 }
231 }
232
233 //parse charge
234 if (isCharge) {
235 if (nTokens >= 1) {
236 charge = tokenizer.nextTokenAsDouble();
237 nTokens -= 1;
238 } else {
239
240 }
241 }
242
243 AtomType* atomType;
244 if (isDirectional) {
245 atomType = new DirectionalAtomType();
246 } else {
247 atomType = new AtomType();
248 }
249
250 atomType->setName(atomTypeName);
251 atomType->setMass(mass);
252
253 if (isLJ) {
254 atomType->setLennardJones();
255 }
256
257 if (isCharge) {
258 atomType->setCharge();
259 }
260
261 atomType->setIdent(ident);
262
263 atomType->complete();
264
265 int setLJStatus;
266
267 //notify a new LJtype atom type is created
268 if (isLJ) {
269 newLJtype(&ident, &sigma, &epsilon, &setLJStatus);
270 }
271
272 int setChargeStatus;
273 if (isCharge) {
274 newChargeType(&ident, &charge, &setChargeStatus)
275 }
276
277 if (setLJStatus && setChargeStatus) {
278 //add atom type to AtomTypeContainer
279 addAtomType(atomTypeName, atomType);
280 ++ident;
281 } else {
282 //error in notifying fortran
283 delete atomType;
284 }
285 }
286
287 }
288
289
290 void DUFF::parseDirectionalAtomType(const std::string& line, int lineNo) {
291 StringTokenizer tokenizer(line);
292 int nTokens = tokenizer.countTokens();
293
294 //in DirectionalAtomTypeSection, a line at least contains 6 tokens
295 //AtomTypeName, isDipole, isSticky, I_xx, I_yy and I_zz
296 if (nTokens < 6) {
297 std::cerr << "Not enought tokens" << std::endl;
298 } else {
299
300
301 std::string atomTypeName = tokenizer.nextToken();
302 bool isDipole = tokenizer.nextTokenAsBool();
303 bool isSticky = tokenizer.nextTokenAsBool();
304 double Ixx = tokenizer.nextTokenAsDouble();
305 double Iyy = tokenizer.nextTokenAsDouble();
306 double Izz = tokenizer.nextTokenAsDouble();
307 nTokens -= 6;
308
309 AtomType* atomType = getAtomType(atomTypeName);
310 if (atomType == NULL) {
311
312 }
313
314 DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);
315 if (dAtomType == NULL) {
316
317
318 }
319
320 if (isDipole) {
321 dAtomType->setDipole();
322 }
323
324 if (isSticky) {
325 dAtomType->setSticky();
326 }
327
328 Mat3x3d inertialMat;
329 inertialMat(0, 0) = Ixx;
330 inertialMat(1, 1) = Iyy;
331 inertialMat(2, 2) = Izz;
332 dAtomType->setI(inertialMat);
333
334 //read dipole moment
335 double dipole;
336 if (isDipole) {
337 if (nTokens >= 1) {
338 dipole = tokenizer.nextTokenAsDouble();
339 nTokens -= 1;
340 } else {
341
342 }
343 }
344
345 //read sticky parameters
346 double w0;
347 double v0;
348 double v0p;
349 double rl;
350 double ru;
351 double rlp;
352 double rup;
353 if (isSticky) {
354 if (nTokens >= 7) {
355 w0 = tokenizer.nextTokenAsDouble();
356 v0 = tokenizer.nextTokenAsDouble();
357 v0p = tokenizer.nextTokenAsDouble();
358 rl = tokenizer.nextTokenAsDouble();
359 ru = tokenizer.nextTokenAsDouble();
360 rlp = tokenizer.nextTokenAsDouble();
361 rup = tokenizer.nextTokenAsDouble();
362 nTokens -= 7;
363 } else {
364
365 }
366 }
367
368
369 //notify fotran a newDipoleType is created
370 int ident = dAtomType->getIdent();
371 int setDipoleStatus;
372 if (isDipole) {
373 newDipoleType(&ident, &dipole, &setDipoleStatus);
374 }
375
376 //notify fotran a StickyType is created
377 int setStickyStatus;
378 if (isSticky) {
379 makeStickyType( &w0, &v0, &v0p, &rl, &ru, &rlp, &rup);
380 }
381
382
383 if (!setDipoleStatus || !setStickyStatus) {
384
385 }
386
387 }
388 }
389
390 void DUFF::parseBondType(const std::string& line, int lineNo){
391
392 StringTokenizer tokenizer(line);
393 std::string at1;
394 std::string at2;
395 std::string bt;
396 BondType* bondType = NULL;
397 double b0;
398
399 int nTokens = tokenizer.countTokens();
400
401 if (nTokens < 4) {
402
403 return;
404 }
405
406 at1 = tokenizer.nextToken();
407 at2 = tokenizer.nextToken();
408 bt = tokenizer.nextToken();
409 b0 = tokenizer.nextTokenAsDouble();
410 nTokens -= 4;
411
412 //switch is a maintain nightmare
413 switch(bt) {
414 case "Fixed" :
415 bondType = new FixedBondType();
416 break;
417
418 case "Harmonic" :
419 if (nTokens < 1) {
420
421 } else {
422
423 double kb = tokenizer.nextTokenAsDouble();
424 bondType = new HarmonicBondType(b0, kb);
425 }
426
427 break;
428
429 case "Cubic" :
430 if (nTokens < 4) {
431
432 } else {
433
434 double k3 = tokenizer.nextTokenAsDouble();
435 double k2 = tokenizer.nextTokenAsDouble();
436 double k1 = tokenizer.nextTokenAsDouble();
437 double k0 = tokenizer.nextTokenAsDouble();
438
439 bondType = new CubicBondType(b0, k3, k2, k1, k0);
440 }
441 break;
442
443 case "Quartic" :
444 if (nTokens < 5) {
445
446 } else {
447
448 b0 = tokenizer.nextTokenAsDouble();
449 double k4 = tokenizer.nextTokenAsDouble();
450 double k3 = tokenizer.nextTokenAsDouble();
451 double k2 = tokenizer.nextTokenAsDouble();
452 double k1 = tokenizer.nextTokenAsDouble();
453 double k0 = tokenizer.nextTokenAsDouble();
454
455 bondType = new QuadraticBondType(b0, k4, k3, k2, k1, k0);
456 }
457 break;
458
459 case "Polynomial" :
460 if (nTokens < 2 || nTokens % 2 != 0) {
461
462 } else {
463 int nPairs = nTokens / 2;
464 int power;
465 double coefficient;
466 PolynomialBondType pbt = new PolynomialBondType();
467
468 for (int i = 0; i < nPairs; ++i) {
469 power = tokenizer.nextTokenAsInt();
470 coefficient = tokenizer.nextTokenAsDouble();
471 pbt->setCoefficient(power, coefficient);
472 }
473 }
474
475 break;
476
477 default:
478
479 }
480
481 if (bondType != NULL) {
482 addBondType(at1, at2, bondType);
483 }
484 }
485
486 void DUFF::parseBendType(const std::string& line, int lineNo){
487 StringTokenizer tokenizer(line);
488 std::string at1;
489 std::string at2;
490 std::string at3;
491 std::string bt;
492 double theta0;
493 BendType* bendType = NULL;
494
495 int nTokens = tokenizer.countTokens();
496
497 if (nTokens < 5) {
498
499 return;
500 }
501
502 at1 = tokenizer.nextToken();
503 at2 = tokenizer.nextToken();
504 at3 = tokenizer.nextToken();
505 bt = tokenizer.nextToken();
506 theta0 = tokenizer.nextTokenAsDouble();
507 nTokens -= 5;
508
509 //switch is a maintain nightmare
510 switch(bt) {
511
512 case "Harmonic" :
513
514 if (nTokens < 1) {
515
516 } else {
517
518 double ktheta = tokenizer.nextTokenAsDouble();
519 bendType = new HarmonicBendType(theta0, ktheta);
520 }
521 break;
522 case "GhostBend" :
523 if (nTokens < 1) {
524
525 } else {
526 double ktheta = tokenizer.nextTokenAsDouble();
527 bendType = new HarmonicBendType(theta0, ktheta);
528 }
529 break;
530
531 case "UreyBradley" :
532 if (nTokens < 3) {
533
534 } else {
535 double ktheta = tokenizer.nextTokenAsDouble();
536 double s0 = tokenizer.nextTokenAsDouble();
537 double kub = tokenizer.nextTokenAsDouble();
538 bendType = new UreyBradleyBendType(theta0, ktheta, s0, kub);
539 }
540 break;
541
542 case "Cubic" :
543 if (nTokens < 4) {
544
545 } else {
546
547 double k3 = tokenizer.nextTokenAsDouble();
548 double k2 = tokenizer.nextTokenAsDouble();
549 double k1 = tokenizer.nextTokenAsDouble();
550 double k0 = tokenizer.nextTokenAsDouble();
551
552 bendType = new CubicBendType(theta0, k3, k2, k1, k0);
553 }
554 break;
555
556 case "Quartic" :
557 if (nTokens < 5) {
558
559 } else {
560
561 theta0 = tokenizer.nextTokenAsDouble();
562 double k4 = tokenizer.nextTokenAsDouble();
563 double k3 = tokenizer.nextTokenAsDouble();
564 double k2 = tokenizer.nextTokenAsDouble();
565 double k1 = tokenizer.nextTokenAsDouble();
566 double k0 = tokenizer.nextTokenAsDouble();
567
568 bendType = new QuadraticBendType(theta0, k4, k3, k2, k1, k0);
569 }
570 break;
571
572 case "Polynomial" :
573 if (nTokens < 2 || nTokens % 2 != 0) {
574
575 } else {
576 int nPairs = nTokens / 2;
577 int power;
578 double coefficient;
579 PolynomialBendType* pbt = new PolynomialBendType();
580
581 for (int i = 0; i < nPairs; ++i) {
582 power = tokenizer.nextTokenAsInt();
583 coefficient = tokenizer.nextTokenAsDouble();
584 pbt->setCoefficient(power, coefficient);
585 }
586 }
587
588 break;
589
590 default:
591
592 }
593
594 if (bendType != NULL) {
595 addBendType(at1, at2, at3, bendType);
596 }
597
598 }
599
600 void DUFF::parseTorsionType(const std::string& line, int lineNo){
601 StringTokenizer tokenizer(line);
602 std::string at1;
603 std::string at2;
604 std::string at3;
605 std::string at4;
606 std::string tt;
607 TorsionType* torsionType = NULL;
608
609 int nTokens = tokenizer.countTokens();
610
611 if (nTokens < 5) {
612
613 return;
614 }
615
616 at1 = tokenizer.nextToken();
617 at2 = tokenizer.nextToken();
618 at3 = tokenizer.nextToken();
619 at4 = tokenizer.nextToken();
620 tt = tokenizer.nextToken();
621
622 nTokens -= 5;
623
624 switch(tt) {
625
626 case "Cubic" :
627 if (nTokens < 4) {
628
629 } else {
630
631 double k3 = tokenizer.nextTokenAsDouble();
632 double k2 = tokenizer.nextTokenAsDouble();
633 double k1 = tokenizer.nextTokenAsDouble();
634 double k0 = tokenizer.nextTokenAsDouble();
635
636 bendType = new CubicTorsionType(k3, k2, k1, k0);
637 }
638 break;
639
640 case "Quartic" :
641 if (nTokens < 5) {
642
643 } else {
644
645 theta0 = tokenizer.nextTokenAsDouble();
646 double k4 = tokenizer.nextTokenAsDouble();
647 double k3 = tokenizer.nextTokenAsDouble();
648 double k2 = tokenizer.nextTokenAsDouble();
649 double k1 = tokenizer.nextTokenAsDouble();
650 double k0 = tokenizer.nextTokenAsDouble();
651
652 bendType = new QuadraticTorsionType( k4, k3, k2, k1, k0);
653 }
654 break;
655
656 case "Polynomial" :
657 if (nTokens < 2 || nTokens % 2 != 0) {
658
659 } else {
660 int nPairs = nTokens / 2;
661 int power;
662 double coefficient;
663 PolynomialTorsionType* pbt = new PolynomialTorsionType();
664
665 for (int i = 0; i < nPairs; ++i) {
666 power = tokenizer.nextTokenAsInt();
667 coefficient = tokenizer.nextTokenAsDouble();
668 pbt->setCoefficient(power, coefficient);
669 }
670 }
671
672 break;
673 case "Charmm" :
674
675 if (nTokens < 3 || nTokens % 3 != 0) {
676
677 } else {
678 int nSets = nTokens / 3;
679
680 CharmmTorsionType* ctt = new CharmmTorsionType();
681
682 for (int i = 0; i < nSets; ++i) {
683 double kchi = tokenizer.nextTokenAsDouble();
684 int n = tokenizer.nextTokenAsInt();
685 double delta = tokenizer.nextTokenAsDouble();
686
687 ctt->setCharmmTorsionParameter(kchi, n, delta);
688 }
689 }
690 default:
691
692 }
693
694 if (torsionType != NULL) {
695 addTorsionType(at1, at2, at3, at4, torsionType);
696 }
697 }
698 */
699 } //end namespace oopse