ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/new_design/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1683, Thu Oct 28 22:34:02 2004 UTC vs.
Revision 1843 by tim, Fri Dec 3 21:30:30 2004 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 > *
4 > * Contact: oopse@oopse.org
5 > *
6 > * This program is free software; you can redistribute it and/or
7 > * modify it under the terms of the GNU Lesser General Public License
8 > * as published by the Free Software Foundation; either version 2.1
9 > * of the License, or (at your option) any later version.
10 > * All we ask is that proper credit is given for our work, which includes
11 > * - but is not limited to - adding the above copyright notice to the beginning
12 > * of your source code files, and to any copyright notice that you may distribute
13 > * with programs based on this work.
14 > *
15 > * This program is distributed in the hope that it will be useful,
16 > * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 > * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 > * GNU Lesser General Public License for more details.
19 > *
20 > * You should have received a copy of the GNU Lesser General Public License
21 > * along with this program; if not, write to the Free Software
22 > * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 > *
24 > */
25  
26 < #include <iostream>
27 < using namespace std;
26 > /**
27 > * @file SimInfo.cpp
28 > * @author    tlin
29 > * @date  11/02/2004
30 > * @version 1.0
31 > */
32  
33 + #include <algorithm>
34 + #include <set>
35   #include "brains/SimInfo.hpp"
36 < #define __C
37 < #include "brains/fSimulation.h"
11 < #include "utils/simError.h"
12 < #include "UseTheForce/DarkSide/simulation_interface.h"
36 > #include "primitives/Molecule.hpp"
37 > #include "UseTheForce/doForces_interface.h"
38   #include "UseTheForce/notifyCutoffs_interface.h"
39 + #include "utils/MemoryUtils.hpp"
40 + #include "utils/simError.h"
41  
42 < //#include "UseTheForce/fortranWrappers.hpp"
42 > namespace oopse {
43  
44 < #include "math/MatVec3.h"
44 > SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
45 >                                ForceField* ff, Globals* simParams) :
46 >                                forceField_(ff), simParams_(simParams),
47 >                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
48 >                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
49 >                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
50 >                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
51 >                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
52 >                                sman_(NULL), fortranInitialized_(false) {
53  
54 < #ifdef IS_MPI
55 < #include "brains/mpiSimulation.hpp"
56 < #endif
54 >            
55 >    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
56 >    MoleculeStamp* molStamp;
57 >    int nMolWithSameStamp;
58 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
59 >    int nGroups = 0;          //total cutoff groups defined in meta-data file
60 >    CutoffGroupStamp* cgStamp;    
61 >    RigidBodyStamp* rbStamp;
62 >    int nRigidAtoms = 0;
63 >    
64 >    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
65 >        molStamp = i->first;
66 >        nMolWithSameStamp = i->second;
67 >        
68 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
69  
70 < inline double roundMe( double x ){
71 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 < }
26 <          
27 < inline double min( double a, double b ){
28 <  return (a < b ) ? a : b;
29 < }
70 >        //calculate atoms in molecules
71 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
72  
31 SimInfo* currentInfo;
73  
74 < SimInfo::SimInfo(){
74 >        //calculate atoms in cutoff groups
75 >        int nAtomsInGroups = 0;
76 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
77 >        
78 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
79 >            cgStamp = molStamp->getCutoffGroup(j);
80 >            nAtomsInGroups += cgStamp->getNMembers();
81 >        }
82  
83 <  n_constraints = 0;
84 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
83 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
84 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
85  
86 <  haveRcut = 0;
87 <  haveRsw = 0;
88 <  boxIsInit = 0;
89 <  
90 <  resetTime = 1e99;
86 >        //calculate atoms in rigid bodies
87 >        int nAtomsInRigidBodies = 0;
88 >        int nRigidBodiesInStamp = molStamp->getNCutoffGroups();
89 >        
90 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
91 >            rbStamp = molStamp->getRigidBody(j);
92 >            nAtomsInRigidBodies += rbStamp->getNMembers();
93 >        }
94  
95 <  orthoRhombic = 0;
96 <  orthoTolerance = 1E-6;
97 <  useInitXSstate = true;
95 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
96 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
97 >        
98 >    }
99  
100 <  usePBC = 0;
101 <  useDirectionalAtoms = 0;
102 <  useLennardJones = 0;
103 <  useElectrostatics = 0;
104 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
100 >    //every free atom (atom does not belong to cutoff groups) is a cutoff group
101 >    //therefore the total number of cutoff groups in the system is equal to
102 >    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
103 >    //file plus the number of cutoff groups defined in meta-data file
104 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
105  
106 <  useSolidThermInt = 0;
107 <  useLiquidThermInt = 0;
106 >    //every free atom (atom does not belong to rigid bodies) is an integrable object
107 >    //therefore the total number of  integrable objects in the system is equal to
108 >    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
109 >    //file plus the number of  rigid bodies defined in meta-data file
110 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
111  
112 <  haveCutoffGroups = false;
112 >    nGlobalMols_ = molStampIds_.size();
113  
114 <  excludes = Exclude::Instance();
114 > #ifdef IS_MPI    
115 >    molToProcMap_.resize(nGlobalMols_);
116 > #endif
117 >    
118 > }
119  
120 <  myConfiguration = new SimState();
120 > SimInfo::~SimInfo() {
121 >    //MemoryUtils::deleteVectorOfPointer(molecules_);
122  
123 <  has_minimizer = false;
124 <  the_minimizer =NULL;
123 >    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
124 >    
125 >    delete sman_;
126 >    delete simParams_;
127 >    delete forceField_;
128  
83  ngroup = 0;
84
129   }
130  
131  
132 < SimInfo::~SimInfo(){
132 > bool SimInfo::addMolecule(Molecule* mol) {
133 >    MoleculeIterator i;
134  
135 <  delete myConfiguration;
135 >    i = molecules_.find(mol->getGlobalIndex());
136 >    if (i == molecules_.end() ) {
137  
138 <  map<string, GenericData*>::iterator i;
139 <  
140 <  for(i = properties.begin(); i != properties.end(); i++)
141 <    delete (*i).second;
138 >        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
139 >        
140 >        nAtoms_ += mol->getNAtoms();
141 >        nBonds_ += mol->getNBonds();
142 >        nBends_ += mol->getNBends();
143 >        nTorsions_ += mol->getNTorsions();
144 >        nRigidBodies_ += mol->getNRigidBodies();
145 >        nIntegrableObjects_ += mol->getNIntegrableObjects();
146 >        nCutoffGroups_ += mol->getNCutoffGroups();
147 >        nConstraints_ += mol->getNConstraints();
148  
149 +        return true;
150 +    } else {
151 +        return false;
152 +    }
153   }
154  
155 < void SimInfo::setBox(double newBox[3]) {
156 <  
157 <  int i, j;
102 <  double tempMat[3][3];
155 > bool SimInfo::removeMolecule(Molecule* mol) {
156 >    MoleculeIterator i;
157 >    i = molecules_.find(mol->getGlobalIndex());
158  
159 <  for(i=0; i<3; i++)
105 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
159 >    if (i != molecules_.end() ) {
160  
161 <  tempMat[0][0] = newBox[0];
162 <  tempMat[1][1] = newBox[1];
163 <  tempMat[2][2] = newBox[2];
161 >        assert(mol == i->second);
162 >        
163 >        nAtoms_ -= mol->getNAtoms();
164 >        nBonds_ -= mol->getNBonds();
165 >        nBends_ -= mol->getNBends();
166 >        nTorsions_ -= mol->getNTorsions();
167 >        nRigidBodies_ -= mol->getNRigidBodies();
168 >        nIntegrableObjects_ -= mol->getNIntegrableObjects();
169 >        nCutoffGroups_ -= mol->getNCutoffGroups();
170 >        nConstraints_ -= mol->getNConstraints();
171  
172 <  setBoxM( tempMat );
172 >        molecules_.erase(mol->getGlobalIndex());
173  
174 < }
174 >        delete mol;
175 >        
176 >        return true;
177 >    } else {
178 >        return false;
179 >    }
180  
115 void SimInfo::setBoxM( double theBox[3][3] ){
116  
117  int i, j;
118  double FortranHmat[9]; // to preserve compatibility with Fortran the
119                         // ordering in the array is as follows:
120                         // [ 0 3 6 ]
121                         // [ 1 4 7 ]
122                         // [ 2 5 8 ]
123  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
181  
182 <  if( !boxIsInit ) boxIsInit = 1;
182 > }    
183  
184 <  for(i=0; i < 3; i++)
185 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
186 <  
187 <  calcBoxL();
188 <  calcHmatInv();
184 >        
185 > Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
186 >    i = molecules_.begin();
187 >    return i == molecules_.end() ? NULL : i->second;
188 > }    
189  
190 <  for(i=0; i < 3; i++) {
191 <    for (j=0; j < 3; j++) {
192 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
137 <    }
138 <  }
139 <
140 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
141 <
190 > Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
191 >    ++i;
192 >    return i == molecules_.end() ? NULL : i->second;    
193   }
143
194  
145 void SimInfo::getBoxM (double theBox[3][3]) {
195  
196 <  int i, j;
197 <  for(i=0; i<3; i++)
198 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
199 < }
196 > void SimInfo::calcNdf() {
197 >    int ndf_local;
198 >    MoleculeIterator i;
199 >    std::vector<StuntDouble*>::iterator j;
200 >    Molecule* mol;
201 >    StuntDouble* integrableObject;
202  
203 +    ndf_local = 0;
204 +    
205 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
206 +        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
207 +               integrableObject = mol->nextIntegrableObject(j)) {
208  
209 < void SimInfo::scaleBox(double scale) {
154 <  double theBox[3][3];
155 <  int i, j;
209 >            ndf_local += 3;
210  
211 <  // cerr << "Scaling box by " << scale << "\n";
211 >            if (integrableObject->isDirectional()) {
212 >                if (integrableObject->isLinear()) {
213 >                    ndf_local += 2;
214 >                } else {
215 >                    ndf_local += 3;
216 >                }
217 >            }
218 >            
219 >        }//end for (integrableObject)
220 >    }// end for (mol)
221 >    
222 >    // n_constraints is local, so subtract them on each processor
223 >    ndf_local -= nConstraints_;
224  
225 <  for(i=0; i<3; i++)
226 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
225 > #ifdef IS_MPI
226 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
227 > #else
228 >    ndf_ = ndf_local;
229 > #endif
230  
231 <  setBoxM(theBox);
231 >    // nZconstraints_ is global, as are the 3 COM translations for the
232 >    // entire system:
233 >    ndf_ = ndf_ - 3 - nZconstraint_;
234  
235   }
236  
237 < void SimInfo::calcHmatInv( void ) {
238 <  
168 <  int oldOrtho;
169 <  int i,j;
170 <  double smallDiag;
171 <  double tol;
172 <  double sanity[3][3];
237 > void SimInfo::calcNdfRaw() {
238 >    int ndfRaw_local;
239  
240 <  invertMat3( Hmat, HmatInv );
240 >    MoleculeIterator i;
241 >    std::vector<StuntDouble*>::iterator j;
242 >    Molecule* mol;
243 >    StuntDouble* integrableObject;
244  
245 <  // check to see if Hmat is orthorhombic
246 <  
247 <  oldOrtho = orthoRhombic;
245 >    // Raw degrees of freedom that we have to set
246 >    ndfRaw_local = 0;
247 >    
248 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
249 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
250 >               integrableObject = mol->nextIntegrableObject(j)) {
251  
252 <  smallDiag = fabs(Hmat[0][0]);
181 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
182 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
183 <  tol = smallDiag * orthoTolerance;
252 >            ndfRaw_local += 3;
253  
254 <  orthoRhombic = 1;
255 <  
256 <  for (i = 0; i < 3; i++ ) {
257 <    for (j = 0 ; j < 3; j++) {
258 <      if (i != j) {
259 <        if (orthoRhombic) {
260 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
261 <        }        
262 <      }
194 <    }
195 <  }
196 <
197 <  if( oldOrtho != orthoRhombic ){
198 <    
199 <    if( orthoRhombic ) {
200 <      sprintf( painCave.errMsg,
201 <               "OOPSE is switching from the default Non-Orthorhombic\n"
202 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
203 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
254 >            if (integrableObject->isDirectional()) {
255 >                if (integrableObject->isLinear()) {
256 >                    ndfRaw_local += 2;
257 >                } else {
258 >                    ndfRaw_local += 3;
259 >                }
260 >            }
261 >            
262 >        }
263      }
264 <    else {
265 <      sprintf( painCave.errMsg,
266 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
267 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
268 <               "\tThis is usually because the box has deformed under\n"
269 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
264 >    
265 > #ifdef IS_MPI
266 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 > #else
268 >    ndfRaw_ = ndfRaw_local;
269 > #endif
270   }
271  
272 < void SimInfo::calcBoxL( void ){
272 > void SimInfo::calcNdfTrans() {
273 >    int ndfTrans_local;
274  
275 <  double dx, dy, dz, dsq;
275 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
276  
229  // boxVol = Determinant of Hmat
277  
278 <  boxVol = matDet3( Hmat );
278 > #ifdef IS_MPI
279 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
280 > #else
281 >    ndfTrans_ = ndfTrans_local;
282 > #endif
283  
284 <  // boxLx
285 <  
286 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
236 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
284 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
285 >
286 > }
287  
288 <  // boxLy
289 <  
290 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
291 <  dsq = dx*dx + dy*dy + dz*dz;
292 <  boxL[1] = sqrt( dsq );
293 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
288 > void SimInfo::addExcludePairs(Molecule* mol) {
289 >    std::vector<Bond*>::iterator bondIter;
290 >    std::vector<Bend*>::iterator bendIter;
291 >    std::vector<Torsion*>::iterator torsionIter;
292 >    Bond* bond;
293 >    Bend* bend;
294 >    Torsion* torsion;
295 >    int a;
296 >    int b;
297 >    int c;
298 >    int d;
299 >    
300 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
301 >        a = bond->getAtomA()->getGlobalIndex();
302 >        b = bond->getAtomB()->getGlobalIndex();        
303 >        exclude_.addPair(a, b);
304 >    }
305  
306 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
307 +        a = bend->getAtomA()->getGlobalIndex();
308 +        b = bend->getAtomB()->getGlobalIndex();        
309 +        c = bend->getAtomC()->getGlobalIndex();
310  
311 <  // boxLz
312 <  
313 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
314 <  dsq = dx*dx + dy*dy + dz*dz;
252 <  boxL[2] = sqrt( dsq );
253 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
311 >        exclude_.addPair(a, b);
312 >        exclude_.addPair(a, c);
313 >        exclude_.addPair(b, c);        
314 >    }
315  
316 <  //calculate the max cutoff
317 <  maxCutoff =  calcMaxCutOff();
318 <  
319 <  checkCutOffs();
316 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
317 >        a = torsion->getAtomA()->getGlobalIndex();
318 >        b = torsion->getAtomB()->getGlobalIndex();        
319 >        c = torsion->getAtomC()->getGlobalIndex();        
320 >        d = torsion->getAtomD()->getGlobalIndex();        
321  
322 +        exclude_.addPair(a, b);
323 +        exclude_.addPair(a, c);
324 +        exclude_.addPair(a, d);
325 +        exclude_.addPair(b, c);
326 +        exclude_.addPair(b, d);
327 +        exclude_.addPair(c, d);        
328 +    }
329 +
330 +    
331   }
332  
333 + void SimInfo::removeExcludePairs(Molecule* mol) {
334 +    std::vector<Bond*>::iterator bondIter;
335 +    std::vector<Bend*>::iterator bendIter;
336 +    std::vector<Torsion*>::iterator torsionIter;
337 +    Bond* bond;
338 +    Bend* bend;
339 +    Torsion* torsion;
340 +    int a;
341 +    int b;
342 +    int c;
343 +    int d;
344 +    
345 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
346 +        a = bond->getAtomA()->getGlobalIndex();
347 +        b = bond->getAtomB()->getGlobalIndex();        
348 +        exclude_.removePair(a, b);
349 +    }
350  
351 < double SimInfo::calcMaxCutOff(){
351 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
352 >        a = bend->getAtomA()->getGlobalIndex();
353 >        b = bend->getAtomB()->getGlobalIndex();        
354 >        c = bend->getAtomC()->getGlobalIndex();
355  
356 <  double ri[3], rj[3], rk[3];
357 <  double rij[3], rjk[3], rki[3];
358 <  double minDist;
356 >        exclude_.removePair(a, b);
357 >        exclude_.removePair(a, c);
358 >        exclude_.removePair(b, c);        
359 >    }
360  
361 <  ri[0] = Hmat[0][0];
362 <  ri[1] = Hmat[1][0];
363 <  ri[2] = Hmat[2][0];
361 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
362 >        a = torsion->getAtomA()->getGlobalIndex();
363 >        b = torsion->getAtomB()->getGlobalIndex();        
364 >        c = torsion->getAtomC()->getGlobalIndex();        
365 >        d = torsion->getAtomD()->getGlobalIndex();        
366  
367 <  rj[0] = Hmat[0][1];
368 <  rj[1] = Hmat[1][1];
369 <  rj[2] = Hmat[2][1];
367 >        exclude_.removePair(a, b);
368 >        exclude_.removePair(a, c);
369 >        exclude_.removePair(a, d);
370 >        exclude_.removePair(b, c);
371 >        exclude_.removePair(b, d);
372 >        exclude_.removePair(c, d);        
373 >    }
374  
375 <  rk[0] = Hmat[0][2];
278 <  rk[1] = Hmat[1][2];
279 <  rk[2] = Hmat[2][2];
280 <    
281 <  crossProduct3(ri, rj, rij);
282 <  distXY = dotProduct3(rk,rij) / norm3(rij);
375 > }
376  
284  crossProduct3(rj,rk, rjk);
285  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
377  
378 <  crossProduct3(rk,ri, rki);
379 <  distZX = dotProduct3(rj,rki) / norm3(rki);
378 > void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
379 >    int curStampId;
380  
381 <  minDist = min(min(distXY, distYZ), distZX);
382 <  return minDist/2;
383 <  
381 >    //index from 0
382 >    curStampId = molStampIds_.size();
383 >
384 >    moleculeStamps_.push_back(molStamp);
385 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
386   }
387  
388 < void SimInfo::wrapVector( double thePos[3] ){
388 > void SimInfo::update() {
389  
390 <  int i;
298 <  double scaled[3];
390 >    setupSimType();
391  
392 <  if( !orthoRhombic ){
393 <    // calc the scaled coordinates.
394 <  
392 > #ifdef IS_MPI
393 >    setupFortranParallel();
394 > #endif
395  
396 <    matVecMul3(HmatInv, thePos, scaled);
305 <    
306 <    for(i=0; i<3; i++)
307 <      scaled[i] -= roundMe(scaled[i]);
308 <    
309 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
310 <    
311 <    matVecMul3(Hmat, scaled, thePos);
396 >    setupFortranSim();
397  
398 <  }
399 <  else{
400 <    // calc the scaled coordinates.
398 >    //setup fortran force field
399 >    /** @deprecate */    
400 >    int isError = 0;
401 >    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
402 >    if(isError){
403 >        sprintf( painCave.errMsg,
404 >         "ForceField error: There was an error initializing the forceField in fortran.\n" );
405 >        painCave.isFatal = 1;
406 >        simError();
407 >    }
408 >  
409      
410 <    for(i=0; i<3; i++)
411 <      scaled[i] = thePos[i]*HmatInv[i][i];
412 <    
413 <    // wrap the scaled coordinates
414 <    
415 <    for(i=0; i<3; i++)
416 <      scaled[i] -= roundMe(scaled[i]);
324 <    
325 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
326 <    
327 <    for(i=0; i<3; i++)
328 <      thePos[i] = scaled[i]*Hmat[i][i];
329 <  }
330 <    
410 >    setupCutoff();
411 >
412 >    calcNdf();
413 >    calcNdfRaw();
414 >    calcNdfTrans();
415 >
416 >    fortranInitialized_ = true;
417   }
418  
419 + std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
420 +    SimInfo::MoleculeIterator mi;
421 +    Molecule* mol;
422 +    Molecule::AtomIterator ai;
423 +    Atom* atom;
424 +    std::set<AtomType*> atomTypes;
425  
426 < int SimInfo::getNDF(){
335 <  int ndf_local;
426 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
427  
428 <  ndf_local = 0;
429 <  
430 <  for(int i = 0; i < integrableObjects.size(); i++){
431 <    ndf_local += 3;
341 <    if (integrableObjects[i]->isDirectional()) {
342 <      if (integrableObjects[i]->isLinear())
343 <        ndf_local += 2;
344 <      else
345 <        ndf_local += 3;
428 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
429 >            atomTypes.insert(atom->getAtomType());
430 >        }
431 >        
432      }
347  }
433  
434 <  // n_constraints is local, so subtract them on each processor:
434 >    return atomTypes;        
435 > }
436  
437 <  ndf_local -= n_constraints;
437 > void SimInfo::setupSimType() {
438 >    std::set<AtomType*>::iterator i;
439 >    std::set<AtomType*> atomTypes;
440 >    atomTypes = getUniqueAtomTypes();
441 >    
442 >    int useLennardJones = 0;
443 >    int useElectrostatic = 0;
444 >    int useEAM = 0;
445 >    int useCharge = 0;
446 >    int useDirectional = 0;
447 >    int useDipole = 0;
448 >    int useGayBerne = 0;
449 >    int useSticky = 0;
450 >    int useShape = 0;
451 >    int useFLARB = 0; //it is not in AtomType yet
452 >    int useDirectionalAtom = 0;    
453 >    int useElectrostatics = 0;
454 >    //usePBC and useRF are from simParams
455 >    bool usePBC = simParams_->getPBC();
456 >    bool useRF = simParams_->getUseRF();
457  
458 < #ifdef IS_MPI
459 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
460 < #else
461 <  ndf = ndf_local;
462 < #endif
458 >    //loop over all of the atom types
459 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
460 >        useLennardJones |= (*i)->isLennardJones();
461 >        useElectrostatic |= (*i)->isElectrostatic();
462 >        useEAM |= (*i)->isEAM();
463 >        useCharge |= (*i)->isCharge();
464 >        useDirectional |= (*i)->isDirectional();
465 >        useDipole |= (*i)->isDipole();
466 >        useGayBerne |= (*i)->isGayBerne();
467 >        useSticky |= (*i)->isSticky();
468 >        useShape |= (*i)->isShape();
469 >    }
470  
471 <  // nZconstraints is global, as are the 3 COM translations for the
472 <  // entire system:
471 >    if (useSticky || useDipole || useGayBerne || useShape) {
472 >        useDirectionalAtom = 1;
473 >    }
474  
475 <  ndf = ndf - 3 - nZconstraints;
475 >    if (useCharge || useDipole) {
476 >        useElectrostatics = 1;
477 >    }
478  
479 <  return ndf;
480 < }
479 > #ifdef IS_MPI    
480 >    int temp;
481  
482 < int SimInfo::getNDFraw() {
483 <  int ndfRaw_local;
482 >    temp = usePBC;
483 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
484  
485 <  // Raw degrees of freedom that we have to set
486 <  ndfRaw_local = 0;
485 >    temp = useDirectionalAtom;
486 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
487  
488 <  for(int i = 0; i < integrableObjects.size(); i++){
489 <    ndfRaw_local += 3;
490 <    if (integrableObjects[i]->isDirectional()) {
491 <       if (integrableObjects[i]->isLinear())
492 <        ndfRaw_local += 2;
493 <      else
494 <        ndfRaw_local += 3;
495 <    }
496 <  }
488 >    temp = useLennardJones;
489 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
490 >
491 >    temp = useElectrostatics;
492 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
493 >
494 >    temp = useCharge;
495 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
496 >
497 >    temp = useDipole;
498 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
499 >
500 >    temp = useSticky;
501 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
502 >
503 >    temp = useGayBerne;
504 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
505 >
506 >    temp = useEAM;
507 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
508 >
509 >    temp = useShape;
510 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
511 >
512 >    temp = useFLARB;
513 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
514 >
515 >    temp = useRF;
516 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
517      
383 #ifdef IS_MPI
384  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
385 #else
386  ndfRaw = ndfRaw_local;
518   #endif
519  
520 <  return ndfRaw;
520 >    fInfo_.SIM_uses_PBC = usePBC;    
521 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
522 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
523 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
524 >    fInfo_.SIM_uses_Charges = useCharge;
525 >    fInfo_.SIM_uses_Dipoles = useDipole;
526 >    fInfo_.SIM_uses_Sticky = useSticky;
527 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
528 >    fInfo_.SIM_uses_EAM = useEAM;
529 >    fInfo_.SIM_uses_Shapes = useShape;
530 >    fInfo_.SIM_uses_FLARB = useFLARB;
531 >    fInfo_.SIM_uses_RF = useRF;
532 >
533 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
534 >
535 >        if (simParams_->haveDielectric()) {
536 >            fInfo_.dielect = simParams_->getDielectric();
537 >        } else {
538 >            sprintf(painCave.errMsg,
539 >                    "SimSetup Error: No Dielectric constant was set.\n"
540 >                    "\tYou are trying to use Reaction Field without"
541 >                    "\tsetting a dielectric constant!\n");
542 >            painCave.isFatal = 1;
543 >            simError();
544 >        }
545 >        
546 >    } else {
547 >        fInfo_.dielect = 0.0;
548 >    }
549 >
550   }
551  
552 < int SimInfo::getNDFtranslational() {
553 <  int ndfTrans_local;
552 > void SimInfo::setupFortranSim() {
553 >    int isError;
554 >    int nExclude;
555 >    std::vector<int> fortranGlobalGroupMembership;
556 >    
557 >    nExclude = exclude_.getSize();
558 >    isError = 0;
559  
560 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
560 >    //globalGroupMembership_ is filled by SimCreator    
561 >    for (int i = 0; i < nGlobalAtoms_; i++) {
562 >        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
563 >    }
564  
565 +    //calculate mass ratio of cutoff group
566 +    std::vector<double> mfact;
567 +    SimInfo::MoleculeIterator mi;
568 +    Molecule* mol;
569 +    Molecule::CutoffGroupIterator ci;
570 +    CutoffGroup* cg;
571 +    Molecule::AtomIterator ai;
572 +    Atom* atom;
573 +    double totalMass;
574  
575 < #ifdef IS_MPI
576 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
577 < #else
578 <  ndfTrans = ndfTrans_local;
579 < #endif
575 >    //to avoid memory reallocation, reserve enough space for mfact
576 >    mfact.reserve(getNCutoffGroups());
577 >    
578 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
579 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
580  
581 <  ndfTrans = ndfTrans - 3 - nZconstraints;
581 >            totalMass = cg->getMass();
582 >            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
583 >                        mfact.push_back(atom->getMass()/totalMass);
584 >            }
585  
586 <  return ndfTrans;
587 < }
586 >        }      
587 >    }
588  
589 < int SimInfo::getTotIntegrableObjects() {
590 <  int nObjs_local;
411 <  int nObjs;
589 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
590 >    std::vector<int> identArray;
591  
592 <  nObjs_local =  integrableObjects.size();
592 >    //to avoid memory reallocation, reserve enough space identArray
593 >    identArray.reserve(getNAtoms());
594 >    
595 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
596 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
597 >            identArray.push_back(atom->getIdent());
598 >        }
599 >    }    
600  
601 +    //fill molMembershipArray
602 +    //molMembershipArray is filled by SimCreator    
603 +    std::vector<int> molMembershipArray(nGlobalAtoms_);
604 +    for (int i = 0; i < nGlobalAtoms_; i++) {
605 +        molMembershipArray.push_back(globalMolMembership_[i] + 1);
606 +    }
607 +    
608 +    //setup fortran simulation
609 +    //gloalExcludes and molMembershipArray should go away (They are never used)
610 +    //why the hell fortran need to know molecule?
611 +    //OOPSE = Object-Obfuscated Parallel Simulation Engine
612 +    int nGlobalExcludes = 0;
613 +    int* globalExcludes = NULL;
614 +    int* excludeList = exclude_.getExcludeList();
615 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
616 +                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
617 +                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
618  
619 < #ifdef IS_MPI
417 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
418 < #else
419 <  nObjs = nObjs_local;
420 < #endif
619 >    if( isError ){
620  
621 +        sprintf( painCave.errMsg,
622 +                 "There was an error setting the simulation information in fortran.\n" );
623 +        painCave.isFatal = 1;
624 +        painCave.severity = OOPSE_ERROR;
625 +        simError();
626 +    }
627  
628 <  return nObjs;
628 > #ifdef IS_MPI
629 >    sprintf( checkPointMsg,
630 >       "succesfully sent the simulation information to fortran.\n");
631 >    MPIcheckPoint();
632 > #endif // is_mpi
633   }
634  
426 void SimInfo::refreshSim(){
635  
636 <  simtype fInfo;
637 <  int isError;
638 <  int n_global;
639 <  int* excl;
636 > #ifdef IS_MPI
637 > void SimInfo::setupFortranParallel() {
638 >    
639 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
640 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
641 >    std::vector<int> localToGlobalCutoffGroupIndex;
642 >    SimInfo::MoleculeIterator mi;
643 >    Molecule::AtomIterator ai;
644 >    Molecule::CutoffGroupIterator ci;
645 >    Molecule* mol;
646 >    Atom* atom;
647 >    CutoffGroup* cg;
648 >    mpiSimData parallelData;
649 >    int isError;
650  
651 <  fInfo.dielect = 0.0;
651 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
652  
653 <  if( useDipoles ){
654 <    if( useReactionField )fInfo.dielect = dielectric;
655 <  }
653 >        //local index(index in DataStorge) of atom is important
654 >        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
655 >            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
656 >        }
657  
658 <  fInfo.SIM_uses_PBC = usePBC;
658 >        //local index of cutoff group is trivial, it only depends on the order of travesing
659 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
660 >            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
661 >        }        
662 >        
663 >    }
664  
665 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
666 <    useDirectionalAtoms = 1;
667 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
668 <  }
665 >    //fill up mpiSimData struct
666 >    parallelData.nMolGlobal = getNGlobalMolecules();
667 >    parallelData.nMolLocal = getNMolecules();
668 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
669 >    parallelData.nAtomsLocal = getNAtoms();
670 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
671 >    parallelData.nGroupsLocal = getNCutoffGroups();
672 >    parallelData.myNode = worldRank;
673 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors));
674  
675 <  fInfo.SIM_uses_LennardJones = useLennardJones;
675 >    //pass mpiSimData struct and index arrays to fortran
676 >    setFsimParallel(parallelData, &(parallelData->nAtomsLocal),
677 >                    &localToGlobalAtomIndex[0],  &(parallelData->nGroupsLocal),
678 >                    &localToGlobalCutoffGroupIndex[0], &isError);
679  
680 <  if (useCharges || useDipoles) {
681 <    useElectrostatics = 1;
682 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
683 <  }
680 >    if (isError) {
681 >        sprintf(painCave.errMsg,
682 >                "mpiRefresh errror: fortran didn't like something we gave it.\n");
683 >        painCave.isFatal = 1;
684 >        simError();
685 >    }
686  
687 <  fInfo.SIM_uses_Charges = useCharges;
688 <  fInfo.SIM_uses_Dipoles = useDipoles;
455 <  fInfo.SIM_uses_Sticky = useSticky;
456 <  fInfo.SIM_uses_GayBerne = useGayBerne;
457 <  fInfo.SIM_uses_EAM = useEAM;
458 <  fInfo.SIM_uses_Shapes = useShapes;
459 <  fInfo.SIM_uses_FLARB = useFLARB;
460 <  fInfo.SIM_uses_RF = useReactionField;
687 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
688 >    MPIcheckPoint();
689  
690 <  n_exclude = excludes->getSize();
691 <  excl = excludes->getFortranArray();
692 <  
465 < #ifdef IS_MPI
466 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
690 >
691 > }
692 >
693   #endif
470  
471  isError = 0;
472  
473  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474  //it may not be a good idea to pass the address of first element in vector
475  //since c++ standard does not require vector to be stored continuously in meomory
476  //Most of the compilers will organize the memory of vector continuously
477  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
694  
695 <  if( isError ){
696 <    
697 <    sprintf( painCave.errMsg,
698 <             "There was an error setting the simulation information in fortran.\n" );
699 <    painCave.isFatal = 1;
700 <    painCave.severity = OOPSE_ERROR;
701 <    simError();
702 <  }
703 <  
695 > double SimInfo::calcMaxCutoffRadius() {
696 >
697 >
698 >    std::set<AtomType*> atomTypes;
699 >    std::set<AtomType*>::iterator i;
700 >    std::vector<double> cutoffRadius;
701 >
702 >    //get the unique atom types
703 >    atomTypes = getUniqueAtomTypes();
704 >
705 >    //query the max cutoff radius among these atom types
706 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
707 >        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
708 >    }
709 >
710 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
711   #ifdef IS_MPI
712 <  sprintf( checkPointMsg,
713 <           "succesfully sent the simulation information to fortran.\n");
493 <  MPIcheckPoint();
494 < #endif // is_mpi
495 <  
496 <  this->ndf = this->getNDF();
497 <  this->ndfRaw = this->getNDFraw();
498 <  this->ndfTrans = this->getNDFtranslational();
499 < }
712 >    //pick the max cutoff radius among the processors
713 > #endif
714  
715 < void SimInfo::setDefaultRcut( double theRcut ){
502 <  
503 <  haveRcut = 1;
504 <  rCut = theRcut;
505 <  rList = rCut + 1.0;
506 <  
507 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
715 >    return maxCutoffRadius;
716   }
717  
718 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
718 > void SimInfo::setupCutoff() {
719 >    double rcut_;  //cutoff radius
720 >    double rsw_; //switching radius
721 >    
722 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
723 >        
724 >        if (!simParams_->haveRcut()){
725 >            sprintf(painCave.errMsg,
726 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
727 >                "\tOOPSE will use a default value of 15.0 angstroms"
728 >                "\tfor the cutoffRadius.\n");
729 >            painCave.isFatal = 0;
730 >            simError();
731 >            rcut_ = 15.0;
732 >        } else{
733 >            rcut_ = simParams_->getRcut();
734 >        }
735  
736 <  rSw = theRsw;
737 <  setDefaultRcut( theRcut );
738 < }
736 >        if (!simParams_->haveRsw()){
737 >            sprintf(painCave.errMsg,
738 >                "SimCreator Warning: No value was set for switchingRadius.\n"
739 >                "\tOOPSE will use a default value of\n"
740 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
741 >            painCave.isFatal = 0;
742 >            simError();
743 >            rsw_ = 0.95 * rcut_;
744 >        } else{
745 >            rsw_ = simParams_->getRsw();
746 >        }
747  
748 +    } else {
749 +        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
750 +        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
751 +        
752 +        if (simParams_->haveRcut()) {
753 +            rcut_ = simParams_->getRcut();
754 +        } else {
755 +            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
756 +            rcut_ = calcMaxCutoffRadius();
757 +        }
758  
759 < void SimInfo::checkCutOffs( void ){
760 <  
761 <  if( boxIsInit ){
759 >        if (simParams_->haveRsw()) {
760 >            rsw_  = simParams_->getRsw();
761 >        } else {
762 >            rsw_ = rcut_;
763 >        }
764      
765 <    //we need to check cutOffs against the box
766 <    
767 <    if( rCut > maxCutoff ){
768 <      sprintf( painCave.errMsg,
769 <               "cutoffRadius is too large for the current periodic box.\n"
770 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
538 <      painCave.isFatal = 1;
539 <      simError();
540 <    }    
541 <  } else {
542 <    // initialize this stuff before using it, OK?
543 <    sprintf( painCave.errMsg,
544 <             "Trying to check cutoffs without a box.\n"
545 <             "\tOOPSE should have better programmers than that.\n" );
546 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
549 <  }
550 <  
765 >    }
766 >        
767 >    double rnblist = rcut_ + 1; // skin of neighbor list
768 >
769 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
770 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
771   }
772  
773 < void SimInfo::addProperty(GenericData* prop){
773 > void SimInfo::addProperty(GenericData* genData) {
774 >    properties_.addProperty(genData);  
775 > }
776  
777 <  map<string, GenericData*>::iterator result;
778 <  result = properties.find(prop->getID());
779 <  
780 <  //we can't simply use  properties[prop->getID()] = prop,
781 <  //it will cause memory leak if we already contain a propery which has the same name of prop
782 <  
783 <  if(result != properties.end()){
784 <    
785 <    delete (*result).second;
786 <    (*result).second = prop;
777 > void SimInfo::removeProperty(const std::string& propName) {
778 >    properties_.removeProperty(propName);  
779 > }
780 >
781 > void SimInfo::clearProperties() {
782 >    properties_.clearProperties();
783 > }
784 >
785 > std::vector<std::string> SimInfo::getPropertyNames() {
786 >    return properties_.getPropertyNames();  
787 > }
788        
789 <  }
790 <  else{
789 > std::vector<GenericData*> SimInfo::getProperties() {
790 >    return properties_.getProperties();
791 > }
792  
793 <    properties[prop->getID()] = prop;
793 > GenericData* SimInfo::getPropertyByName(const std::string& propName) {
794 >    return properties_.getPropertyByName(propName);
795 > }
796  
797 <  }
797 > void SimInfo::setSnapshotManager(SnapshotManager* sman) {
798 >    sman_ = sman;
799 >
800 >    Molecule* mol;
801 >    RigidBody* rb;
802 >    Atom* atom;
803 >    SimInfo::MoleculeIterator mi;
804 >    Molecule::RigidBodyIterator rbIter;
805 >    Molecule::AtomIterator atomIter;;
806 >
807 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
808 >        
809 >        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
810 >            atom->setSnapshotManager(sman_);
811 >        }
812 >        
813 >        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
814 >            rb->setSnapshotManager(sman_);
815 >        }
816 >    }    
817      
818   }
819  
820 < GenericData* SimInfo::getProperty(const string& propName){
820 > Vector3d SimInfo::getComVel(){
821 >    SimInfo::MoleculeIterator i;
822 >    Molecule* mol;
823 >
824 >    Vector3d comVel(0.0);
825 >    double totalMass = 0.0;
826 >    
827  
828 <  map<string, GenericData*>::iterator result;
829 <  
830 <  //string lowerCaseName = ();
831 <  
832 <  result = properties.find(propName);
833 <  
834 <  if(result != properties.end())
835 <    return (*result).second;  
836 <  else  
586 <    return NULL;  
828 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
829 >        double mass = mol->getMass();
830 >        totalMass += mass;
831 >        comVel += mass * mol->getComVel();
832 >    }  
833 >
834 >    comVel /= totalMass;
835 >
836 >    return comVel;
837   }
838  
839 + Vector3d SimInfo::getCom(){
840 +    SimInfo::MoleculeIterator i;
841 +    Molecule* mol;
842  
843 < void SimInfo::getFortranGroupArrays(SimInfo* info,
844 <                                    vector<int>& FglobalGroupMembership,
845 <                                    vector<double>& mfact){
846 <  
847 <  Molecule* myMols;
848 <  Atom** myAtoms;
849 <  int numAtom;
850 <  double mtot;
598 <  int numMol;
599 <  int numCutoffGroups;
600 <  CutoffGroup* myCutoffGroup;
601 <  vector<CutoffGroup*>::iterator iterCutoff;
602 <  Atom* cutoffAtom;
603 <  vector<Atom*>::iterator iterAtom;
604 <  int atomIndex;
605 <  double totalMass;
606 <  
607 <  mfact.clear();
608 <  FglobalGroupMembership.clear();
609 <  
843 >    Vector3d com(0.0);
844 >    double totalMass = 0.0;
845 >    
846 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
847 >        double mass = mol->getMass();
848 >        totalMass += mass;
849 >        com += mass * mol->getCom();
850 >    }  
851  
852 <  // Fix the silly fortran indexing problem
612 < #ifdef IS_MPI
613 <  numAtom = mpiSim->getNAtomsGlobal();
614 < #else
615 <  numAtom = n_atoms;
616 < #endif
617 <  for (int i = 0; i < numAtom; i++)
618 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619 <  
852 >    com /= totalMass;
853  
854 <  myMols = info->molecules;
622 <  numMol = info->n_mol;
623 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
854 >    return com;
855  
856 <      totalMass = myCutoffGroup->getMass();
630 <      
631 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
632 <          cutoffAtom != NULL;
633 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
634 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
635 <      }  
636 <    }
637 <  }
856 > }        
857  
858 + std::ostream& operator <<(std::ostream& o, SimInfo& info) {
859 +
860 +    return o;
861   }
862 +
863 + }//end namespace oopse
864 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines