ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-2.0/src/integrators/NPTxyz.cpp
(Generate patch)

Comparing branches/new_design/OOPSE-2.0/src/integrators/NPTxyz.cpp (file contents):
Revision 1701 by tim, Wed Nov 3 16:08:43 2004 UTC vs.
Revision 1867 by tim, Tue Dec 7 23:08:14 2004 UTC

# Line 1 | Line 1
1 #include <math.h>
2 #include "math/MatVec3.h"
3 #include "primitives/Atom.hpp"
4 #include "primitives/SRI.hpp"
5 #include "primitives/AbstractClasses.hpp"
1   #include "brains/SimInfo.hpp"
7 #include "UseTheForce/ForceFields.hpp"
2   #include "brains/Thermo.hpp"
3 < #include "io/ReadWrite.hpp"
4 < #include "integrators/Integrator.hpp"
3 > #include "integrators/IntegratorCreator.hpp"
4 > #include "integrators/NPTxyz.hpp"
5 > #include "primitives/Molecule.hpp"
6 > #include "utils/OOPSEConstant.hpp"
7   #include "utils/simError.h"
8  
13 #ifdef IS_MPI
14 #include "brains/mpiSimulation.hpp"
15 #endif
16
9   // Basic non-isotropic thermostating and barostating via the Melchionna
10   // modification of the Hoover algorithm:
11   //
# Line 24 | Line 16 | template<typename T> NPTxyz<T>::NPTxyz ( SimInfo *theI
16   //
17   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
18  
19 < template<typename T> NPTxyz<T>::NPTxyz ( SimInfo *theInfo, ForceFields* the_ff):
28 <  T( theInfo, the_ff )
29 < {
30 <  GenericData* data;
31 <  DoubleVectorGenericData * etaValue;
32 <  int i,j;
19 > namespace oopse {
20  
21 <  for(i = 0; i < 3; i++){
22 <    for (j = 0; j < 3; j++){
21 > static IntegratorBuilder<NPTxyz>* NPTxyzCreator = new IntegratorBuilder<NPTxyz>("NPTxyz");
22 >    
23 > double NPTxyz::calcConservedQuantity(){
24  
25 <      eta[i][j] = 0.0;
26 <      oldEta[i][j] = 0.0;
27 <    }
28 <  }
25 >    // We need NkBT a lot, so just set it here: This is the RAW number
26 >    // of integrableObjects, so no subtraction or addition of constraints or
27 >    // orientational degrees of freedom:
28 >    NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp;
29  
30 +    // fkBT is used because the thermostat operates on more degrees of freedom
31 +    // than the barostat (when there are particles with orientational degrees
32 +    // of freedom).  
33 +    fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp;        
34  
35 <  if( theInfo->useInitXSstate ){
35 >    double conservedQuantity;
36 >    double totalEnergy;
37 >    double thermostat_kinetic;
38 >    double thermostat_potential;
39 >    double barostat_kinetic;
40 >    double barostat_potential;
41 >    double trEta;
42  
43 <    // retrieve eta array from simInfo if it exists
46 <    data = info->getPropertyByName(ETAVALUE_ID);
47 <    if(data){
48 <      etaValue = dynamic_cast<DoubleVectorGenericData*>(data);
49 <      
50 <      if(etaValue){
51 <        
52 <        for(i = 0; i < 3; i++){
53 <          for (j = 0; j < 3; j++){
54 <            eta[i][j] = (*etaValue)[3*i+j];
55 <            oldEta[i][j] = eta[i][j];
56 <          }
57 <        }
58 <      }
59 <    }
60 <  }
61 < }
43 >    totalEnergy = thermo.getTotalE();
44  
45 < template<typename T> NPTxyz<T>::~NPTxyz() {
45 >    thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert);
46  
47 <  // empty for now
66 < }
47 >    thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert;
48  
49 < template<typename T> void NPTxyz<T>::resetIntegrator() {
49 >    SquareMatrix<double, 3> tmp = eta.transpose() * eta;
50 >    trEta = tmp.trace();
51  
52 <  int i, j;
52 >    barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert);
53  
54 <  for(i = 0; i < 3; i++)
73 <    for (j = 0; j < 3; j++)
74 <      eta[i][j] = 0.0;
54 >    barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert;
55  
56 <  T::resetIntegrator();
57 < }
56 >    conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
57 >        barostat_kinetic + barostat_potential;
58  
79 template<typename T> void NPTxyz<T>::evolveEtaA() {
59  
60 <  int i, j;
60 >    return conservedQuantity;
61  
83  for(i = 0; i < 3; i ++){
84    for(j = 0; j < 3; j++){
85      if( i == j)
86        eta[i][j] += dt2 *  instaVol *
87          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
88      else
89        eta[i][j] = 0.0;
90    }
91  }
92
93  for(i = 0; i < 3; i++)
94    for (j = 0; j < 3; j++)
95      oldEta[i][j] = eta[i][j];
62   }
63  
64 < template<typename T> void NPTxyz<T>::evolveEtaB() {
64 >    
65 > void NPTxyz::scaleSimBox(){
66  
67 <  int i,j;
67 >    int i,j,k;
68 >    Mat3x3d scaleMat;
69 >    double eta2ij, scaleFactor;
70 >    double bigScale, smallScale, offDiagMax;
71 >    Mat3x3d hm;
72 >    Mat3x3d hmnew;
73  
102  for(i = 0; i < 3; i++)
103    for (j = 0; j < 3; j++)
104      prevEta[i][j] = eta[i][j];
74  
106  for(i = 0; i < 3; i ++){
107    for(j = 0; j < 3; j++){
108      if( i == j) {
109        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
110          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
111      } else {
112        eta[i][j] = 0.0;
113      }
114    }
115  }
116 }
75  
118 template<typename T> void NPTxyz<T>::calcVelScale(void) {
119  int i,j;
120
121  for (i = 0; i < 3; i++ ) {
122    for (j = 0; j < 3; j++ ) {
123      vScale[i][j] = eta[i][j];
124
125      if (i == j) {
126        vScale[i][j] += chi;
127      }
128    }
129  }
130 }
131
132 template<typename T> void NPTxyz<T>::getVelScaleA(double sc[3], double vel[3]) {
133  matVecMul3( vScale, vel, sc );
134 }
135
136 template<typename T> void NPTxyz<T>::getVelScaleB(double sc[3], int index ){
137  int j;
138  double myVel[3];
139
140  for (j = 0; j < 3; j++)
141    myVel[j] = oldVel[3*index + j];
142
143  matVecMul3( vScale, myVel, sc );
144 }
145
146 template<typename T> void NPTxyz<T>::getPosScale(double pos[3], double COM[3],
147                                               int index, double sc[3]){
148  int j;
149  double rj[3];
150
151  for(j=0; j<3; j++)
152    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
153
154  matVecMul3( eta, rj, sc );
155 }
156
157 template<typename T> void NPTxyz<T>::scaleSimBox( void ){
158
159  int i,j,k;
160  double scaleMat[3][3];
161  double eta2ij, scaleFactor;
162  double bigScale, smallScale, offDiagMax;
163  double hm[3][3], hmnew[3][3];
164
165
166
76    // Scale the box after all the positions have been moved:
77  
78    // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
79    //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
80  
81 <  bigScale = 1.0;
82 <  smallScale = 1.0;
83 <  offDiagMax = 0.0;
81 >    bigScale = 1.0;
82 >    smallScale = 1.0;
83 >    offDiagMax = 0.0;
84  
85 <  for(i=0; i<3; i++){
86 <    for(j=0; j<3; j++){
87 <      scaleMat[i][j] = 0.0;
88 <      if(i==j) scaleMat[i][j] = 1.0;
85 >    for(i=0; i<3; i++){
86 >        for(j=0; j<3; j++){
87 >            scaleMat(i, j) = 0.0;
88 >            if(i==j) {
89 >                scaleMat(i, j) = 1.0;
90 >            }
91 >        }
92      }
181  }
93  
94 <  for(i=0;i<3;i++){
94 >    for(i=0;i<3;i++){
95  
96      // calculate the scaleFactors
97  
98 <    scaleFactor = exp(dt*eta[i][i]);
98 >        scaleFactor = exp(dt*eta(i, i));
99  
100 <    scaleMat[i][i] = scaleFactor;
100 >        scaleMat(i, i) = scaleFactor;
101  
102 <    if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
103 <    if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
104 <  }
102 >        if (scaleMat(i, i) > bigScale) {
103 >            bigScale = scaleMat(i, i);
104 >        }
105 >        
106 >        if (scaleMat(i, i) < smallScale) {
107 >            smallScale = scaleMat(i, i);
108 >        }
109 >    }
110  
111 < //   for(i=0; i<3; i++){
112 < //     for(j=0; j<3; j++){
111 >    if ((bigScale > 1.1) || (smallScale < 0.9)) {
112 >        sprintf( painCave.errMsg,
113 >            "NPTxyz error: Attempting a Box scaling of more than 10 percent.\n"
114 >            " Check your tauBarostat, as it is probably too small!\n\n"
115 >            " scaleMat = [%lf\t%lf\t%lf]\n"
116 >            "            [%lf\t%lf\t%lf]\n"
117 >            "            [%lf\t%lf\t%lf]\n",
118 >        scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2),
119 >        scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2),
120 >        scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2));
121 >        painCave.isFatal = 1;
122 >        simError();
123 >    } else {
124  
125 < //       // Calculate the matrix Product of the eta array (we only need
126 < //       // the ij element right now):
127 <
128 < //       eta2ij = 0.0;
202 < //       for(k=0; k<3; k++){
203 < //         eta2ij += eta[i][k] * eta[k][j];
204 < //       }
205 <
206 < //       scaleMat[i][j] = 0.0;
207 < //       // identity matrix (see above):
208 < //       if (i == j) scaleMat[i][j] = 1.0;
209 < //       // Taylor expansion for the exponential truncated at second order:
210 < //       scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
211 <
212 < //       if (i != j)
213 < //         if (fabs(scaleMat[i][j]) > offDiagMax)
214 < //           offDiagMax = fabs(scaleMat[i][j]);
215 < //     }
216 <
217 < //     if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
218 < //     if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
219 < //   }
220 <
221 <  if ((bigScale > 1.1) || (smallScale < 0.9)) {
222 <    sprintf( painCave.errMsg,
223 <             "NPTxyz error: Attempting a Box scaling of more than 10 percent.\n"
224 <             " Check your tauBarostat, as it is probably too small!\n\n"
225 <             " scaleMat = [%lf\t%lf\t%lf]\n"
226 <             "            [%lf\t%lf\t%lf]\n"
227 <             "            [%lf\t%lf\t%lf]\n",
228 <             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
229 <             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
230 <             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
231 <    painCave.isFatal = 1;
232 <    simError();
233 <  } else {
234 <    info->getBoxM(hm);
235 <    matMul3(hm, scaleMat, hmnew);
236 <    info->setBoxM(hmnew);
237 <  }
125 >        Mat3x3d hmat = currentSnapshot_->getHmat();
126 >        hmat = hmat *scaleMat;
127 >        currentSnapshot_->setHmat(hmat);
128 >    }
129   }
130  
131 < template<typename T> bool NPTxyz<T>::etaConverged() {
132 <  int i;
242 <  double diffEta, sumEta;
243 <
244 <  sumEta = 0;
245 <  for(i = 0; i < 3; i++)
246 <    sumEta += pow(prevEta[i][i] - eta[i][i], 2);
247 <
248 <  diffEta = sqrt( sumEta / 3.0 );
249 <
250 <  return ( diffEta <= etaTolerance );
131 > void NPTxyz::loadEta() {
132 >    eta= currentSnapshot_->getEta();
133   }
134  
253 template<typename T> double NPTxyz<T>::getConservedQuantity(void){
254
255  double conservedQuantity;
256  double totalEnergy;
257  double thermostat_kinetic;
258  double thermostat_potential;
259  double barostat_kinetic;
260  double barostat_potential;
261  double trEta;
262  double a[3][3], b[3][3];
263
264  totalEnergy = tStats->getTotalE();
265
266  thermostat_kinetic = fkBT * tt2 * chi * chi /
267    (2.0 * eConvert);
268
269  thermostat_potential = fkBT* integralOfChidt / eConvert;
270
271  transposeMat3(eta, a);
272  matMul3(a, eta, b);
273  trEta = matTrace3(b);
274
275  barostat_kinetic = NkBT * tb2 * trEta /
276    (2.0 * eConvert);
277
278  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
279    eConvert;
280
281  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
282    barostat_kinetic + barostat_potential;
283
284 //   cout.width(8);
285 //   cout.precision(8);
286
287 //   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
288 //       "\t" << thermostat_potential << "\t" << barostat_kinetic <<
289 //       "\t" << barostat_potential << "\t" << conservedQuantity << endl;
290
291  return conservedQuantity;
292
135   }
294
295 template<typename T> string NPTxyz<T>::getAdditionalParameters(void){
296  string parameters;
297  const int BUFFERSIZE = 2000; // size of the read buffer
298  char buffer[BUFFERSIZE];
299
300  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
301  parameters += buffer;
302
303  for(int i = 0; i < 3; i++){
304    sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]);
305    parameters += buffer;
306  }
307
308  return parameters;
309
310 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines