ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-2.0/src/math/SquareMatrix3.hpp
Revision: 1870
Committed: Thu Dec 9 15:45:21 2004 UTC (19 years, 8 months ago) by tim
File size: 18136 byte(s)
Log Message:
Fix a bug in calculating torque in rigid body

File Contents

# Content
1 /*
2 * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3 *
4 * Contact: oopse@oopse.org
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * as published by the Free Software Foundation; either version 2.1
9 * of the License, or (at your option) any later version.
10 * All we ask is that proper credit is given for our work, which includes
11 * - but is not limited to - adding the above copyright notice to the beginning
12 * of your source code files, and to any copyright notice that you may distribute
13 * with programs based on this work.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 */
25
26 /**
27 * @file SquareMatrix3.hpp
28 * @author Teng Lin
29 * @date 10/11/2004
30 * @version 1.0
31 */
32 #ifndef MATH_SQUAREMATRIX3_HPP
33 #define MATH_SQUAREMATRIX3_HPP
34
35 #include "Quaternion.hpp"
36 #include "SquareMatrix.hpp"
37 #include "Vector3.hpp"
38
39 namespace oopse {
40
41 template<typename Real>
42 class SquareMatrix3 : public SquareMatrix<Real, 3> {
43 public:
44
45 typedef Real ElemType;
46 typedef Real* ElemPoinerType;
47
48 /** default constructor */
49 SquareMatrix3() : SquareMatrix<Real, 3>() {
50 }
51
52 /** Constructs and initializes every element of this matrix to a scalar */
53 SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){
54 }
55
56 /** Constructs and initializes from an array */
57 SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){
58 }
59
60
61 /** copy constructor */
62 SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
63 }
64
65 SquareMatrix3( const Vector3<Real>& eulerAngles) {
66 setupRotMat(eulerAngles);
67 }
68
69 SquareMatrix3(Real phi, Real theta, Real psi) {
70 setupRotMat(phi, theta, psi);
71 }
72
73 SquareMatrix3(const Quaternion<Real>& q) {
74 setupRotMat(q);
75
76 }
77
78 SquareMatrix3(Real w, Real x, Real y, Real z) {
79 setupRotMat(w, x, y, z);
80 }
81
82 /** copy assignment operator */
83 SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
84 if (this == &m)
85 return *this;
86 SquareMatrix<Real, 3>::operator=(m);
87 return *this;
88 }
89
90
91 SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) {
92 this->setupRotMat(q);
93 return *this;
94 }
95
96 /**
97 * Sets this matrix to a rotation matrix by three euler angles
98 * @ param euler
99 */
100 void setupRotMat(const Vector3<Real>& eulerAngles) {
101 setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
102 }
103
104 /**
105 * Sets this matrix to a rotation matrix by three euler angles
106 * @param phi
107 * @param theta
108 * @psi theta
109 */
110 void setupRotMat(Real phi, Real theta, Real psi) {
111 Real sphi, stheta, spsi;
112 Real cphi, ctheta, cpsi;
113
114 sphi = sin(phi);
115 stheta = sin(theta);
116 spsi = sin(psi);
117 cphi = cos(phi);
118 ctheta = cos(theta);
119 cpsi = cos(psi);
120
121 data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
122 data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
123 data_[0][2] = spsi * stheta;
124
125 data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
126 data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
127 data_[1][2] = cpsi * stheta;
128
129 data_[2][0] = stheta * sphi;
130 data_[2][1] = -stheta * cphi;
131 data_[2][2] = ctheta;
132 }
133
134
135 /**
136 * Sets this matrix to a rotation matrix by quaternion
137 * @param quat
138 */
139 void setupRotMat(const Quaternion<Real>& quat) {
140 setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
141 }
142
143 /**
144 * Sets this matrix to a rotation matrix by quaternion
145 * @param w the first element
146 * @param x the second element
147 * @param y the third element
148 * @param z the fourth element
149 */
150 void setupRotMat(Real w, Real x, Real y, Real z) {
151 Quaternion<Real> q(w, x, y, z);
152 *this = q.toRotationMatrix3();
153 }
154
155 /**
156 * Returns the quaternion from this rotation matrix
157 * @return the quaternion from this rotation matrix
158 * @exception invalid rotation matrix
159 */
160 Quaternion<Real> toQuaternion() {
161 Quaternion<Real> q;
162 Real t, s;
163 Real ad1, ad2, ad3;
164 t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0;
165
166 if( t > 0.0 ){
167
168 s = 0.5 / sqrt( t );
169 q[0] = 0.25 / s;
170 q[1] = (data_[1][2] - data_[2][1]) * s;
171 q[2] = (data_[2][0] - data_[0][2]) * s;
172 q[3] = (data_[0][1] - data_[1][0]) * s;
173 } else {
174
175 ad1 = fabs( data_[0][0] );
176 ad2 = fabs( data_[1][1] );
177 ad3 = fabs( data_[2][2] );
178
179 if( ad1 >= ad2 && ad1 >= ad3 ){
180
181 s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] );
182 q[0] = (data_[1][2] + data_[2][1]) / s;
183 q[1] = 0.5 / s;
184 q[2] = (data_[0][1] + data_[1][0]) / s;
185 q[3] = (data_[0][2] + data_[2][0]) / s;
186 } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
187 s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0;
188 q[0] = (data_[0][2] + data_[2][0]) / s;
189 q[1] = (data_[0][1] + data_[1][0]) / s;
190 q[2] = 0.5 / s;
191 q[3] = (data_[1][2] + data_[2][1]) / s;
192 } else {
193
194 s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0;
195 q[0] = (data_[0][1] + data_[1][0]) / s;
196 q[1] = (data_[0][2] + data_[2][0]) / s;
197 q[2] = (data_[1][2] + data_[2][1]) / s;
198 q[3] = 0.5 / s;
199 }
200 }
201
202 return q;
203
204 }
205
206 /**
207 * Returns the euler angles from this rotation matrix
208 * @return the euler angles in a vector
209 * @exception invalid rotation matrix
210 * We use so-called "x-convention", which is the most common definition.
211 * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first
212 * rotation is by an angle phi about the z-axis, the second is by an angle
213 * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the
214 * z-axis (again).
215 */
216 Vector3<Real> toEulerAngles() {
217 Vector3<Real> myEuler;
218 Real phi,theta,psi,eps;
219 Real ctheta,stheta;
220
221 // set the tolerance for Euler angles and rotation elements
222
223 theta = acos(std::min(1.0, std::max(-1.0,data_[2][2])));
224 ctheta = data_[2][2];
225 stheta = sqrt(1.0 - ctheta * ctheta);
226
227 // when sin(theta) is close to 0, we need to consider singularity
228 // In this case, we can assign an arbitary value to phi (or psi), and then determine
229 // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0
230 // in cases of singularity.
231 // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
232 // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never
233 // change the sign of both of the parameters passed to atan2.
234
235 if (fabs(stheta) <= oopse::epsilon){
236 psi = 0.0;
237 phi = atan2(-data_[1][0], data_[0][0]);
238 }
239 // we only have one unique solution
240 else{
241 phi = atan2(data_[2][0], -data_[2][1]);
242 psi = atan2(data_[0][2], data_[1][2]);
243 }
244
245 //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
246 if (phi < 0)
247 phi += M_PI;
248
249 if (psi < 0)
250 psi += M_PI;
251
252 myEuler[0] = phi;
253 myEuler[1] = theta;
254 myEuler[2] = psi;
255
256 return myEuler;
257 }
258
259 /** Returns the determinant of this matrix. */
260 Real determinant() const {
261 Real x,y,z;
262
263 x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]);
264 y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]);
265 z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]);
266
267 return(x + y + z);
268 }
269
270 /** Returns the trace of this matrix. */
271 Real trace() const {
272 return data_[0][0] + data_[1][1] + data_[2][2];
273 }
274
275 /**
276 * Sets the value of this matrix to the inversion of itself.
277 * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
278 * implementation of inverse in SquareMatrix class
279 */
280 SquareMatrix3<Real> inverse() const {
281 SquareMatrix3<Real> m;
282 double det = determinant();
283 if (fabs(det) <= oopse::epsilon) {
284 //"The method was called on a matrix with |determinant| <= 1e-6.",
285 //"This is a runtime or a programming error in your application.");
286 }
287
288 m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1];
289 m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2];
290 m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0];
291 m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1];
292 m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2];
293 m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0];
294 m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1];
295 m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2];
296 m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0];
297
298 m /= det;
299 return m;
300 }
301 /**
302 * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
303 * The eigenvectors (the columns of V) will be normalized.
304 * The eigenvectors are aligned optimally with the x, y, and z
305 * axes respectively.
306 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
307 * overwritten
308 * @param w will contain the eigenvalues of the matrix On return of this function
309 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
310 * normalized and mutually orthogonal.
311 * @warning a will be overwritten
312 */
313 static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
314 };
315 /*=========================================================================
316
317 Program: Visualization Toolkit
318 Module: $RCSfile: SquareMatrix3.hpp,v $
319
320 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
321 All rights reserved.
322 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
323
324 This software is distributed WITHOUT ANY WARRANTY; without even
325 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
326 PURPOSE. See the above copyright notice for more information.
327
328 =========================================================================*/
329 template<typename Real>
330 void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
331 SquareMatrix3<Real>& v) {
332 int i,j,k,maxI;
333 Real tmp, maxVal;
334 Vector3<Real> v_maxI, v_k, v_j;
335
336 // diagonalize using Jacobi
337 jacobi(a, w, v);
338 // if all the eigenvalues are the same, return identity matrix
339 if (w[0] == w[1] && w[0] == w[2] ) {
340 v = SquareMatrix3<Real>::identity();
341 return;
342 }
343
344 // transpose temporarily, it makes it easier to sort the eigenvectors
345 v = v.transpose();
346
347 // if two eigenvalues are the same, re-orthogonalize to optimally line
348 // up the eigenvectors with the x, y, and z axes
349 for (i = 0; i < 3; i++) {
350 if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
351 // find maximum element of the independant eigenvector
352 maxVal = fabs(v(i, 0));
353 maxI = 0;
354 for (j = 1; j < 3; j++) {
355 if (maxVal < (tmp = fabs(v(i, j)))){
356 maxVal = tmp;
357 maxI = j;
358 }
359 }
360
361 // swap the eigenvector into its proper position
362 if (maxI != i) {
363 tmp = w(maxI);
364 w(maxI) = w(i);
365 w(i) = tmp;
366
367 v.swapRow(i, maxI);
368 }
369 // maximum element of eigenvector should be positive
370 if (v(maxI, maxI) < 0) {
371 v(maxI, 0) = -v(maxI, 0);
372 v(maxI, 1) = -v(maxI, 1);
373 v(maxI, 2) = -v(maxI, 2);
374 }
375
376 // re-orthogonalize the other two eigenvectors
377 j = (maxI+1)%3;
378 k = (maxI+2)%3;
379
380 v(j, 0) = 0.0;
381 v(j, 1) = 0.0;
382 v(j, 2) = 0.0;
383 v(j, j) = 1.0;
384
385 /** @todo */
386 v_maxI = v.getRow(maxI);
387 v_j = v.getRow(j);
388 v_k = cross(v_maxI, v_j);
389 v_k.normalize();
390 v_j = cross(v_k, v_maxI);
391 v.setRow(j, v_j);
392 v.setRow(k, v_k);
393
394
395 // transpose vectors back to columns
396 v = v.transpose();
397 return;
398 }
399 }
400
401 // the three eigenvalues are different, just sort the eigenvectors
402 // to align them with the x, y, and z axes
403
404 // find the vector with the largest x element, make that vector
405 // the first vector
406 maxVal = fabs(v(0, 0));
407 maxI = 0;
408 for (i = 1; i < 3; i++) {
409 if (maxVal < (tmp = fabs(v(i, 0)))) {
410 maxVal = tmp;
411 maxI = i;
412 }
413 }
414
415 // swap eigenvalue and eigenvector
416 if (maxI != 0) {
417 tmp = w(maxI);
418 w(maxI) = w(0);
419 w(0) = tmp;
420 v.swapRow(maxI, 0);
421 }
422 // do the same for the y element
423 if (fabs(v(1, 1)) < fabs(v(2, 1))) {
424 tmp = w(2);
425 w(2) = w(1);
426 w(1) = tmp;
427 v.swapRow(2, 1);
428 }
429
430 // ensure that the sign of the eigenvectors is correct
431 for (i = 0; i < 2; i++) {
432 if (v(i, i) < 0) {
433 v(i, 0) = -v(i, 0);
434 v(i, 1) = -v(i, 1);
435 v(i, 2) = -v(i, 2);
436 }
437 }
438
439 // set sign of final eigenvector to ensure that determinant is positive
440 if (v.determinant() < 0) {
441 v(2, 0) = -v(2, 0);
442 v(2, 1) = -v(2, 1);
443 v(2, 2) = -v(2, 2);
444 }
445
446 // transpose the eigenvectors back again
447 v = v.transpose();
448 return ;
449 }
450
451 /**
452 * Return the multiplication of two matrixes (m1 * m2).
453 * @return the multiplication of two matrixes
454 * @param m1 the first matrix
455 * @param m2 the second matrix
456 */
457 template<typename Real>
458 inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) {
459 SquareMatrix3<Real> result;
460
461 for (unsigned int i = 0; i < 3; i++)
462 for (unsigned int j = 0; j < 3; j++)
463 for (unsigned int k = 0; k < 3; k++)
464 result(i, j) += m1(i, k) * m2(k, j);
465
466 return result;
467 }
468
469 template<typename Real>
470 inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) {
471 SquareMatrix3<Real> result;
472
473 for (unsigned int i = 0; i < 3; i++) {
474 for (unsigned int j = 0; j < 3; j++) {
475 result(i, j) = v1[i] * v2[j];
476 }
477 }
478
479 return result;
480 }
481
482
483 typedef SquareMatrix3<double> Mat3x3d;
484 typedef SquareMatrix3<double> RotMat3x3d;
485
486 } //namespace oopse
487 #endif // MATH_SQUAREMATRIX_HPP
488