ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/new_design/OOPSE-3.0/src/brains/SimInfo.cpp (file contents):
Revision 1683, Thu Oct 28 22:34:02 2004 UTC vs.
Revision 1739 by tim, Mon Nov 15 18:02:15 2004 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 > *
4 > * Contact: oopse@oopse.org
5 > *
6 > * This program is free software; you can redistribute it and/or
7 > * modify it under the terms of the GNU Lesser General Public License
8 > * as published by the Free Software Foundation; either version 2.1
9 > * of the License, or (at your option) any later version.
10 > * All we ask is that proper credit is given for our work, which includes
11 > * - but is not limited to - adding the above copyright notice to the beginning
12 > * of your source code files, and to any copyright notice that you may distribute
13 > * with programs based on this work.
14 > *
15 > * This program is distributed in the hope that it will be useful,
16 > * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 > * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 > * GNU Lesser General Public License for more details.
19 > *
20 > * You should have received a copy of the GNU Lesser General Public License
21 > * along with this program; if not, write to the Free Software
22 > * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 > *
24 > */
25  
26 < #include <iostream>
27 < using namespace std;
26 > /**
27 > * @file SimInfo.cpp
28 > * @author    tlin
29 > * @date  11/02/2004
30 > * @version 1.0
31 > */
32  
33 + #include <algorithm>
34 +
35   #include "brains/SimInfo.hpp"
36 < #define __C
10 < #include "brains/fSimulation.h"
11 < #include "utils/simError.h"
12 < #include "UseTheForce/DarkSide/simulation_interface.h"
13 < #include "UseTheForce/notifyCutoffs_interface.h"
36 > #include "utils/MemoryUtils.hpp"
37  
38 < //#include "UseTheForce/fortranWrappers.hpp"
38 > namespace oopse {
39  
40 < #include "math/MatVec3.h"
40 > SimInfo::SimInfo(const std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
41 >                                ForceField* ff, Globals* globals) :
42 >                                forceField_(ff), globals_(globals), nAtoms_(0), nBonds_(0),
43 >                                nBends_(0), nTorsions_(0), nRigidBodies_(0), nIntegrableObjects_(0),
44 >                                nCutoffGroups_(0), nConstraints_(0), nZConstraint_(0), sman_(NULL),
45 >                                fortranInitialized_(false) {
46  
47 < #ifdef IS_MPI
48 < #include "brains/mpiSimulation.hpp"
49 < #endif
47 >    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
48 >    MoleculeStamp* molStamp;
49 >    int nMolWithSameStamp;
50 >    int nCutoffAtoms; // number of atoms belong to cutoff groups
51 >    int nGroups;          //total cutoff groups defined in meta-data file
52 >    CutoffGroupStamp* cgStamp;
53 >    int nAtomsInGroups;
54 >    int nCutoffGroupsInStamp;
55 >    
56 >    RigidBodyStamp* rbStamp;
57 >    int nAtomsInRigidBodies;
58 >    int nRigidBodiesInStamp;
59 >    int nRigidAtoms;
60 >    int nRigidBodies;
61 >        
62 >    nGlobalAtoms_ =  0;
63 >    
64 >    nGroups = 0;
65 >    nCutoffAtoms = 0;
66  
67 < inline double roundMe( double x ){
68 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
69 < }
70 <          
71 < inline double min( double a, double b ){
72 <  return (a < b ) ? a : b;
73 < }
67 >    nRigidBodies
68 >    nRigidBodies = 0;
69 >    
70 >    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
71 >        molStamp = i->first;
72 >        nMolWithSameStamp = i->second;
73 >        
74 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
75  
76 < SimInfo* currentInfo;
76 >        //calculate atoms in molecules
77 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
78  
33 SimInfo::SimInfo(){
79  
80 <  n_constraints = 0;
81 <  nZconstraints = 0;
82 <  n_oriented = 0;
83 <  n_dipoles = 0;
84 <  ndf = 0;
85 <  ndfRaw = 0;
86 <  nZconstraints = 0;
87 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
80 >        //calculate atoms in cutoff groups
81 >        nAtomsInGroups = 0;
82 >        nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
83 >        
84 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
85 >            cgStamp = molStamp->getCutoffGroup(j);
86 >            nAtomsInGroups += cgStamp->getNMembers();
87 >        }
88  
89 <  haveRcut = 0;
90 <  haveRsw = 0;
51 <  boxIsInit = 0;
52 <  
53 <  resetTime = 1e99;
89 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
90 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
91  
92 <  orthoRhombic = 0;
93 <  orthoTolerance = 1E-6;
94 <  useInitXSstate = true;
92 >        //calculate atoms in rigid bodies
93 >        nAtomsInRigidBodies = 0;
94 >        nRigidBodiesInStamp = molStamp->getNCutoffGroups();
95 >        
96 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
97 >            rbStamp = molStamp->getRigidBody(j);
98 >            nRigidBodiesInStamp += rbStamp->getNMembers();
99 >        }
100  
101 <  usePBC = 0;
102 <  useDirectionalAtoms = 0;
103 <  useLennardJones = 0;
104 <  useElectrostatics = 0;
63 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
101 >        nRigidBodies += nRigidBodiesInStamp * nMolWithSameStamp;
102 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
103 >        
104 >    }
105  
106 <  useSolidThermInt = 0;
107 <  useLiquidThermInt = 0;
106 >    //every free atom (atom does not belong to cutoff groups) is a cutoff group
107 >    //therefore the total number of cutoff groups in the system is equal to
108 >    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
109 >    //file plus the number of cutoff groups defined in meta-data file
110 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
111  
112 <  haveCutoffGroups = false;
112 >    //every free atom (atom does not belong to rigid bodies) is a rigid body
113 >    //therefore the total number of cutoff groups in the system is equal to
114 >    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
115 >    //file plus the number of  rigid bodies defined in meta-data file
116 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nRigidBodies;
117  
118 <  excludes = Exclude::Instance();
118 >    //initialize globalGroupMembership_, every element of this array will be 0
119 >    globalGroupMembership_.insert(globalGroupMembership_.end(), nGlobalAtoms_, 0);
120  
121 <  myConfiguration = new SimState();
121 >    nGlobalMols_ = molStampIds_.size();
122  
123 <  has_minimizer = false;
124 <  the_minimizer =NULL;
123 > #ifdef IS_MPI    
124 >    molToProcMap_.resize(nGlobalMols_);
125 > #endif
126 >    
127 > }
128  
129 <  ngroup = 0;
129 > SimInfo::~SimInfo() {
130 >    //MemoryUtils::deleteVectorOfPointer(molecules_);
131  
132 +    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
133 +    
134 +    delete sman_;
135 +    delete globals_;
136 +    delete forceField_;
137 +
138   }
139  
140  
141 < SimInfo::~SimInfo(){
141 > bool SimInfo::addMolecule(Molecule* mol) {
142 >    MoleculeIterator i;
143  
144 <  delete myConfiguration;
144 >    i = molecules_.find(mol->getGlobalIndex());
145 >    if (i != molecules_.end() ) {
146  
147 <  map<string, GenericData*>::iterator i;
148 <  
149 <  for(i = properties.begin(); i != properties.end(); i++)
150 <    delete (*i).second;
147 >        molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
148 >        
149 >        nAtoms_ += mol->getNAtoms();
150 >        nBonds_ += mol->getNBonds();
151 >        nBends_ += mol->getNBends();
152 >        nTorsions_ += mol->getNTorsions();
153 >        nRigidBodies_ += mol->getNRigidBodies();
154 >        nIntegrableObjects_ += mol->getNIntegrableObjects();
155 >        nCutoffGroups_ += mol->getNCutoffGroups();
156 >        nConstraints_ += mol->getNConstraints();
157  
158 +        return true;
159 +    } else {
160 +        return false;
161 +    }
162   }
163  
164 < void SimInfo::setBox(double newBox[3]) {
165 <  
166 <  int i, j;
102 <  double tempMat[3][3];
164 > bool SimInfo::removeMolecule(Molecule* mol) {
165 >    MoleculeIterator i;
166 >    i = molecules_.find(mol->getGlobalIndex());
167  
168 <  for(i=0; i<3; i++)
105 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
168 >    if (i != molecules_.end() ) {
169  
170 <  tempMat[0][0] = newBox[0];
171 <  tempMat[1][1] = newBox[1];
172 <  tempMat[2][2] = newBox[2];
170 >        assert(mol == i->second);
171 >        
172 >        nAtoms_ -= mol->getNAtoms();
173 >        nBonds_ -= mol->getNBonds();
174 >        nBends_ -= mol->getNBends();
175 >        nTorsions_ -= mol->getNTorsions();
176 >        nRigidBodies_ -= mol->getNRigidBodies();
177 >        nIntegrableObjects_ -= mol->getNIntegrableObjects();
178 >        nCutoffGroups_ -= mol->getNCutoffGroups();
179 >        nConstraints_ -= mol->getNConstraints();
180  
181 <  setBoxM( tempMat );
181 >        molecules_.erase(mol->getGlobalIndex());
182  
183 < }
183 >        delete mol;
184 >        
185 >        return true;
186 >    } else {
187 >        return false;
188 >    }
189  
115 void SimInfo::setBoxM( double theBox[3][3] ){
116  
117  int i, j;
118  double FortranHmat[9]; // to preserve compatibility with Fortran the
119                         // ordering in the array is as follows:
120                         // [ 0 3 6 ]
121                         // [ 1 4 7 ]
122                         // [ 2 5 8 ]
123  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
190  
191 <  if( !boxIsInit ) boxIsInit = 1;
191 > }    
192  
193 <  for(i=0; i < 3; i++)
194 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
195 <  
196 <  calcBoxL();
197 <  calcHmatInv();
193 >        
194 > Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
195 >    i = molecules_.begin();
196 >    return i == molecules_.end() ? NULL : i->second;
197 > }    
198  
199 <  for(i=0; i < 3; i++) {
200 <    for (j=0; j < 3; j++) {
201 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
137 <    }
138 <  }
139 <
140 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
141 <
199 > Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
200 >    ++i;
201 >    return i == molecules_.end() ? NULL : i->second;    
202   }
143
203  
145 void SimInfo::getBoxM (double theBox[3][3]) {
204  
205 <  int i, j;
206 <  for(i=0; i<3; i++)
207 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
208 < }
205 > void SimInfo::calcNdf() {
206 >    int ndf_local;
207 >    MoleculeIterator i;
208 >    std::vector<StuntDouble*>::iterator j;
209 >    Molecule* mol;
210 >    StuntDouble* integrableObject;
211  
212 +    ndf_local = 0;
213 +    
214 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
215 +        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
216 +               integrableObject = mol->nextIntegrableObject(j)) {
217  
218 < void SimInfo::scaleBox(double scale) {
154 <  double theBox[3][3];
155 <  int i, j;
218 >            ndf_local += 3;
219  
220 <  // cerr << "Scaling box by " << scale << "\n";
220 >            if (integrableObject->isDirectional()) {
221 >                if (integrableObject->isLinear()) {
222 >                    ndf_local += 2;
223 >                } else {
224 >                    ndf_local += 3;
225 >                }
226 >            }
227 >            
228 >        }//end for (integrableObject)
229 >    }// end for (mol)
230 >    
231 >    // n_constraints is local, so subtract them on each processor
232 >    ndf_local -= nConstraints_;
233  
234 <  for(i=0; i<3; i++)
235 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
234 > #ifdef IS_MPI
235 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
236 > #else
237 >    ndf_ = ndf_local;
238 > #endif
239  
240 <  setBoxM(theBox);
240 >    // nZconstraints_ is global, as are the 3 COM translations for the
241 >    // entire system:
242 >    ndf_ = ndf_ - 3 - nZconstraints_;
243  
244   }
245  
246 < void SimInfo::calcHmatInv( void ) {
247 <  
168 <  int oldOrtho;
169 <  int i,j;
170 <  double smallDiag;
171 <  double tol;
172 <  double sanity[3][3];
246 > void SimInfo::calcNdfRaw() {
247 >    int ndfRaw_local;
248  
249 <  invertMat3( Hmat, HmatInv );
249 >    MoleculeIterator i;
250 >    std::vector<StuntDouble*>::iterator j;
251 >    Molecule* mol;
252 >    StuntDouble* integrableObject;
253  
254 <  // check to see if Hmat is orthorhombic
255 <  
256 <  oldOrtho = orthoRhombic;
257 <
258 <  smallDiag = fabs(Hmat[0][0]);
259 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
182 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
183 <  tol = smallDiag * orthoTolerance;
254 >    // Raw degrees of freedom that we have to set
255 >    ndfRaw_local = 0;
256 >    
257 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
258 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
259 >               integrableObject = mol->nextIntegrableObject(j)) {
260  
261 <  orthoRhombic = 1;
186 <  
187 <  for (i = 0; i < 3; i++ ) {
188 <    for (j = 0 ; j < 3; j++) {
189 <      if (i != j) {
190 <        if (orthoRhombic) {
191 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
192 <        }        
193 <      }
194 <    }
195 <  }
261 >            ndfRaw_local += 3;
262  
263 <  if( oldOrtho != orthoRhombic ){
264 <    
265 <    if( orthoRhombic ) {
266 <      sprintf( painCave.errMsg,
267 <               "OOPSE is switching from the default Non-Orthorhombic\n"
268 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
269 <               "\tThis is usually a good thing, but if you wan't the\n"
270 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
271 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
263 >            if (integrableObject->isDirectional()) {
264 >                if (integrableObject->isLinear()) {
265 >                    ndfRaw_local += 2;
266 >                } else {
267 >                    ndfRaw_local += 3;
268 >                }
269 >            }
270 >            
271 >        }
272      }
273 <    else {
274 <      sprintf( painCave.errMsg,
275 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
276 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
277 <               "\tThis is usually because the box has deformed under\n"
278 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
273 >    
274 > #ifdef IS_MPI
275 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
276 > #else
277 >    ndfRaw_ = ndfRaw_local;
278 > #endif
279   }
280  
281 < void SimInfo::calcBoxL( void ){
281 > void SimInfo::calcNdfTrans() {
282 >    int ndfTrans_local;
283  
284 <  double dx, dy, dz, dsq;
284 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
285  
229  // boxVol = Determinant of Hmat
286  
287 <  boxVol = matDet3( Hmat );
287 > #ifdef IS_MPI
288 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
289 > #else
290 >    ndfTrans_ = ndfTrans_local;
291 > #endif
292  
293 <  // boxLx
294 <  
295 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
236 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
293 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraints_;
294 >
295 > }
296  
297 <  // boxLy
298 <  
299 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
300 <  dsq = dx*dx + dy*dy + dz*dz;
301 <  boxL[1] = sqrt( dsq );
302 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
297 > void SimInfo::addExcludePairs(Molecule* mol) {
298 >    std::vector<Bond*>::iterator bondIter;
299 >    std::vector<Bend*>::iterator bendIter;
300 >    std::vector<Torsion*>::iterator torsionIter;
301 >    Bond* bond;
302 >    Bend* bend;
303 >    Torsion* torsion;
304 >    int a;
305 >    int b;
306 >    int c;
307 >    int d;
308 >    
309 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
310 >        a = bond->getAtomA()->getGlobalIndex();
311 >        b = bond->getAtomB()->getGlobalIndex();        
312 >        exclude_.addPair(a, b);
313 >    }
314  
315 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
316 +        a = bend->getAtomA()->getGlobalIndex();
317 +        b = bend->getAtomB()->getGlobalIndex();        
318 +        c = bend->getAtomC()->getGlobalIndex();
319  
320 <  // boxLz
321 <  
322 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
323 <  dsq = dx*dx + dy*dy + dz*dz;
252 <  boxL[2] = sqrt( dsq );
253 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
320 >        exclude_.addPair(a, b);
321 >        exclude_.addPair(a, c);
322 >        exclude_.addPair(b, c);        
323 >    }
324  
325 <  //calculate the max cutoff
326 <  maxCutoff =  calcMaxCutOff();
327 <  
328 <  checkCutOffs();
325 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextBond(torsionIter)) {
326 >        a = torsion->getAtomA()->getGlobalIndex();
327 >        b = torsion->getAtomB()->getGlobalIndex();        
328 >        c = torsion->getAtomC()->getGlobalIndex();        
329 >        d = torsion->getAtomD()->getGlobalIndex();        
330  
331 +        exclude_.addPair(a, b);
332 +        exclude_.addPair(a, c);
333 +        exclude_.addPair(a, d);
334 +        exclude_.addPair(b, c);
335 +        exclude_.addPair(b, d);
336 +        exclude_.addPair(c, d);        
337 +    }
338 +
339 +    
340   }
341  
342 + void SimInfo::removeExcludePairs(Molecule* mol) {
343 +    std::vector<Bond*>::iterator bondIter;
344 +    std::vector<Bend*>::iterator bendIter;
345 +    std::vector<Torsion*>::iterator torsionIter;
346 +    Bond* bond;
347 +    Bend* bend;
348 +    Torsion* torsion;
349 +    int a;
350 +    int b;
351 +    int c;
352 +    int d;
353 +    
354 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
355 +        a = bond->getAtomA()->getGlobalIndex();
356 +        b = bond->getAtomB()->getGlobalIndex();        
357 +        exclude_.removePair(a, b);
358 +    }
359  
360 < double SimInfo::calcMaxCutOff(){
360 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
361 >        a = bend->getAtomA()->getGlobalIndex();
362 >        b = bend->getAtomB()->getGlobalIndex();        
363 >        c = bend->getAtomC()->getGlobalIndex();
364  
365 <  double ri[3], rj[3], rk[3];
366 <  double rij[3], rjk[3], rki[3];
367 <  double minDist;
365 >        exclude_.removePair(a, b);
366 >        exclude_.removePair(a, c);
367 >        exclude_.removePair(b, c);        
368 >    }
369  
370 <  ri[0] = Hmat[0][0];
371 <  ri[1] = Hmat[1][0];
372 <  ri[2] = Hmat[2][0];
370 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextBond(torsionIter)) {
371 >        a = torsion->getAtomA()->getGlobalIndex();
372 >        b = torsion->getAtomB()->getGlobalIndex();        
373 >        c = torsion->getAtomC()->getGlobalIndex();        
374 >        d = torsion->getAtomD()->getGlobalIndex();        
375  
376 <  rj[0] = Hmat[0][1];
377 <  rj[1] = Hmat[1][1];
378 <  rj[2] = Hmat[2][1];
376 >        exclude_.removePair(a, b);
377 >        exclude_.removePair(a, c);
378 >        exclude_.removePair(a, d);
379 >        exclude_.removePair(b, c);
380 >        exclude_.removePair(b, d);
381 >        exclude_.removePair(c, d);        
382 >    }
383  
384 <  rk[0] = Hmat[0][2];
278 <  rk[1] = Hmat[1][2];
279 <  rk[2] = Hmat[2][2];
280 <    
281 <  crossProduct3(ri, rj, rij);
282 <  distXY = dotProduct3(rk,rij) / norm3(rij);
384 > }
385  
284  crossProduct3(rj,rk, rjk);
285  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
386  
387 <  crossProduct3(rk,ri, rki);
388 <  distZX = dotProduct3(rj,rki) / norm3(rki);
387 > void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
388 >    int curStampId;
389  
390 <  minDist = min(min(distXY, distYZ), distZX);
391 <  return minDist/2;
392 <  
390 >    //index from 0
391 >    curStampId = molStampIds_.size();
392 >
393 >    moleculeStamps_.push_back(molStamp);
394 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId)
395   }
396  
397 < void SimInfo::wrapVector( double thePos[3] ){
397 > void SimInfo::update() {
398  
399 <  int i;
298 <  double scaled[3];
399 >    setupSimType();
400  
401 <  if( !orthoRhombic ){
402 <    // calc the scaled coordinates.
403 <  
401 > #ifdef IS_MPI
402 >    setupFortranParallel();
403 > #endif
404  
405 <    matVecMul3(HmatInv, thePos, scaled);
305 <    
306 <    for(i=0; i<3; i++)
307 <      scaled[i] -= roundMe(scaled[i]);
308 <    
309 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
310 <    
311 <    matVecMul3(Hmat, scaled, thePos);
405 >    setupFortranSim();
406  
407 <  }
314 <  else{
315 <    // calc the scaled coordinates.
316 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] = thePos[i]*HmatInv[i][i];
319 <    
320 <    // wrap the scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      scaled[i] -= roundMe(scaled[i]);
324 <    
325 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
326 <    
327 <    for(i=0; i<3; i++)
328 <      thePos[i] = scaled[i]*Hmat[i][i];
329 <  }
330 <    
331 < }
407 >    setupCutoff();
408  
409 +    //notify fortran whether reaction field is used or not. It is deprecated now
410 +    //int isError = 0;
411 +    //initFortranFF( &useReactionField, &isError );
412  
413 < int SimInfo::getNDF(){
414 <  int ndf_local;
413 >    //if(isError){
414 >    //    sprintf( painCave.errMsg,
415 >    //    "SimCreator::initFortran() error: There was an error initializing the forceField in fortran.\n" );
416 >    //    painCave.isFatal = 1;
417 >    //    simError();
418 >    //}
419 >    
420 >    calcNdf();
421 >    calcNdfRaw();
422 >    calcNdfTrans();
423  
424 <  ndf_local = 0;
425 <  
339 <  for(int i = 0; i < integrableObjects.size(); i++){
340 <    ndf_local += 3;
341 <    if (integrableObjects[i]->isDirectional()) {
342 <      if (integrableObjects[i]->isLinear())
343 <        ndf_local += 2;
344 <      else
345 <        ndf_local += 3;
346 <    }
347 <  }
424 >    fortranInitialized_ = true;
425 > }
426  
427 <  // n_constraints is local, so subtract them on each processor:
427 > std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
428 >    typename SimInfo::MoleculeIterator mi;
429 >    Molecule* mol;
430 >    typename Molecule::AtomIterator ai;
431 >    Atom* atom;
432 >    std::set<AtomType*> atomTypes;
433  
434 <  ndf_local -= n_constraints;
434 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
435  
436 < #ifdef IS_MPI
437 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
438 < #else
439 <  ndf = ndf_local;
440 < #endif
436 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
437 >            atomTypes.insert(atom->getAtomType());
438 >        }
439 >        
440 >    }
441  
442 <  // nZconstraints is global, as are the 3 COM translations for the
360 <  // entire system:
361 <
362 <  ndf = ndf - 3 - nZconstraints;
363 <
364 <  return ndf;
442 >    return atomTypes;        
443   }
444  
445 < int SimInfo::getNDFraw() {
446 <  int ndfRaw_local;
445 > void SimInfo::setupSimType() {
446 >    std::set<AtomType*>::iterator i;
447 >    std::set<AtomType*> atomTypes;
448 >    atomTypes = getUniqueAtomTypes();
449 >    
450 >    int useLennardJones = 0;
451 >    int useElectrostatic = 0;
452 >    int useEAM = 0;
453 >    int useCharge = 0;
454 >    int useDirectional = 0;
455 >    int useDipole = 0;
456 >    int useGayBerne = 0;
457 >    int useSticky = 0;
458 >    int useShape = 0;
459 >    int useFLARB = 0; //it is not in AtomType yet
460 >    int useDirectionalAtom = 0;    
461 >    int useElectrostatics = 0;
462 >    //usePBC and useRF are from globals
463 >    bool usePBC = globals_->getPBC();
464 >    bool useRF = globals_->getUseRF();
465  
466 <  // Raw degrees of freedom that we have to set
467 <  ndfRaw_local = 0;
466 >    //loop over all of the atom types
467 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
468 >        useLennardJones |= i->isLennardJones();
469 >        useElectrostatic |= i->isElectrostatic();
470 >        useEAM |= i->isEAM();
471 >        useCharge |= i->isCharge();
472 >        useDirectional |= i->isDirectional();
473 >        useDipole |= i->isDipole();
474 >        useGayBerne |= i->isGayBerne();
475 >        useSticky |= i->isSticky();
476 >        useShape |= i->isShape();
477 >    }
478  
479 <  for(int i = 0; i < integrableObjects.size(); i++){
480 <    ndfRaw_local += 3;
375 <    if (integrableObjects[i]->isDirectional()) {
376 <       if (integrableObjects[i]->isLinear())
377 <        ndfRaw_local += 2;
378 <      else
379 <        ndfRaw_local += 3;
479 >    if (useSticky || useDipole || useGayBerne || useShape) {
480 >        useDirectionalAtom = 1;
481      }
381  }
382    
383 #ifdef IS_MPI
384  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
385 #else
386  ndfRaw = ndfRaw_local;
387 #endif
482  
483 <  return ndfRaw;
484 < }
483 >    if (useCharge || useDipole) {
484 >        useElectrostatics = 1;
485 >    }
486  
487 < int SimInfo::getNDFtranslational() {
488 <  int ndfTrans_local;
487 > #ifdef IS_MPI    
488 >    int temp;
489  
490 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
490 >    temp = usePBC;
491 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
492  
493 +    temp = useDirectionalAtom;
494 +    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
495  
496 < #ifdef IS_MPI
497 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
400 < #else
401 <  ndfTrans = ndfTrans_local;
402 < #endif
496 >    temp = useLennardJones;
497 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
498  
499 <  ndfTrans = ndfTrans - 3 - nZconstraints;
499 >    temp = useElectrostatics;
500 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
501  
502 <  return ndfTrans;
503 < }
502 >    temp = useCharge;
503 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
504  
505 < int SimInfo::getTotIntegrableObjects() {
506 <  int nObjs_local;
411 <  int nObjs;
505 >    temp = useDipole;
506 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
507  
508 <  nObjs_local =  integrableObjects.size();
508 >    temp = useSticky;
509 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
510  
511 +    temp = useGayBerne;
512 +    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
513  
514 < #ifdef IS_MPI
515 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
516 < #else
517 <  nObjs = nObjs_local;
514 >    temp = useEAM;
515 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
516 >
517 >    temp = useShape;
518 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
519 >
520 >    temp = useFLARB;
521 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
522 >
523 >    temp = useRF;
524 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
525 >    
526   #endif
527  
528 +    fInfo_.SIM_uses_PBC = usePBC;    
529 +    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
530 +    fInfo_.SIM_uses_LennardJones = useLennardJones;
531 +    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
532 +    fInfo_.SIM_uses_Charges = useCharge;
533 +    fInfo_.SIM_uses_Dipoles = useDipole;
534 +    fInfo_.SIM_uses_Sticky = useSticky;
535 +    fInfo_.SIM_uses_GayBerne = useGayBerne;
536 +    fInfo_.SIM_uses_EAM = useEAM;
537 +    fInfo_.SIM_uses_Shapes = useShape;
538 +    fInfo_.SIM_uses_FLARB = useFLARB;
539 +    fInfo_.SIM_uses_RF = useRF;
540  
541 <  return nObjs;
541 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
542 >        fInfo_.dielect = dielectric;
543 >    } else {
544 >        fInfo_.dielect = 0.0;
545 >    }
546 >
547   }
548  
549 < void SimInfo::refreshSim(){
549 > void SimInfo::setupFortranSim() {
550 >    int isError;
551 >    int nExclude;
552 >    std::vector<int> fortranGlobalGroupMembership;
553 >    
554 >    nExclude = exclude_.getSize();
555 >    isError = 0;
556  
557 <  simtype fInfo;
558 <  int isError;
559 <  int n_global;
560 <  int* excl;
557 >    //globalGroupMembership_ is filled by SimCreator    
558 >    for (int i = 0; i < nGlobalAtoms_; i++) {
559 >        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
560 >    }
561  
562 <  fInfo.dielect = 0.0;
562 >    //calculate mass ratio of cutoff group
563 >    std::vector<double> mfact;
564 >    typename SimInfo::MoleculeIterator mi;
565 >    Molecule* mol;
566 >    typename Molecule::CutoffGroupIterator ci;
567 >    CutoffGroup* cg;
568 >    typename Molecule::AtomIterator ai;
569 >    Atom* atom;
570 >    double totalMass;
571  
572 <  if( useDipoles ){
573 <    if( useReactionField )fInfo.dielect = dielectric;
574 <  }
572 >    //to avoid memory reallocation, reserve enough space for mfact
573 >    mfact.reserve(getNCutoffGroups());
574 >    
575 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
576 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
577  
578 <  fInfo.SIM_uses_PBC = usePBC;
578 >            totalMass = cg->getMass();
579 >            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
580 >                        mfact.push_back(atom->getMass()/totalMass);
581 >            }
582  
583 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
584 <    useDirectionalAtoms = 1;
443 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
444 <  }
583 >        }      
584 >    }
585  
586 <  fInfo.SIM_uses_LennardJones = useLennardJones;
586 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
587 >    std::vector<int> identArray;
588  
589 <  if (useCharges || useDipoles) {
590 <    useElectrostatics = 1;
591 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
592 <  }
589 >    //to avoid memory reallocation, reserve enough space identArray
590 >    identArray.reserve(getNAtoms());
591 >    
592 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
593 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
594 >            identArray.push_back(atom->getIdent());
595 >        }
596 >    }    
597  
598 <  fInfo.SIM_uses_Charges = useCharges;
599 <  fInfo.SIM_uses_Dipoles = useDipoles;
600 <  fInfo.SIM_uses_Sticky = useSticky;
601 <  fInfo.SIM_uses_GayBerne = useGayBerne;
602 <  fInfo.SIM_uses_EAM = useEAM;
603 <  fInfo.SIM_uses_Shapes = useShapes;
604 <  fInfo.SIM_uses_FLARB = useFLARB;
605 <  fInfo.SIM_uses_RF = useReactionField;
606 <
607 <  n_exclude = excludes->getSize();
608 <  excl = excludes->getFortranArray();
609 <  
610 < #ifdef IS_MPI
466 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
469 < #endif
470 <  
471 <  isError = 0;
472 <  
473 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474 <  //it may not be a good idea to pass the address of first element in vector
475 <  //since c++ standard does not require vector to be stored continuously in meomory
476 <  //Most of the compilers will organize the memory of vector continuously
477 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
598 >    //fill molMembershipArray
599 >    //molMembershipArray is filled by SimCreator    
600 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
601 >    for (int i = 0; i < nGlobalAtoms_; i++) {
602 >        molMembershipArray.push_back(globalMolMembership_[i] + 1);
603 >    }
604 >    
605 >    //setup fortran simulation
606 >    //gloalExcludes and molMembershipArray should go away (They are never used)
607 >    //why the hell fortran need to know molecule?
608 >    //OOPSE = Object-Obfuscated Parallel Simulation Engine
609 >    
610 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, exclude_->getExcludeList(),
611                    &nGlobalExcludes, globalExcludes, molMembershipArray,
612 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
612 >                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
613  
614 <  if( isError ){
615 <    
616 <    sprintf( painCave.errMsg,
617 <             "There was an error setting the simulation information in fortran.\n" );
618 <    painCave.isFatal = 1;
619 <    painCave.severity = OOPSE_ERROR;
620 <    simError();
621 <  }
622 <  
614 >    if( isError ){
615 >
616 >        sprintf( painCave.errMsg,
617 >                 "There was an error setting the simulation information in fortran.\n" );
618 >        painCave.isFatal = 1;
619 >        painCave.severity = OOPSE_ERROR;
620 >        simError();
621 >    }
622 >
623   #ifdef IS_MPI
624 <  sprintf( checkPointMsg,
625 <           "succesfully sent the simulation information to fortran.\n");
626 <  MPIcheckPoint();
624 >    sprintf( checkPointMsg,
625 >       "succesfully sent the simulation information to fortran.\n");
626 >    MPIcheckPoint();
627   #endif // is_mpi
495  
496  this->ndf = this->getNDF();
497  this->ndfRaw = this->getNDFraw();
498  this->ndfTrans = this->getNDFtranslational();
628   }
629  
501 void SimInfo::setDefaultRcut( double theRcut ){
502  
503  haveRcut = 1;
504  rCut = theRcut;
505  rList = rCut + 1.0;
506  
507  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 }
630  
631 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
632 <
633 <  rSw = theRsw;
634 <  setDefaultRcut( theRcut );
635 < }
631 > #ifdef IS_MPI
632 > void SimInfo::setupFortranParallel() {
633 >    
634 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
635 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
636 >    std::vector<int> localToGlobalCutoffGroupIndex;
637 >    typename SimInfo::MoleculeIterator mi;
638 >    typename Molecule::AtomIterator ai;
639 >    typename Molecule::CutoffGroupIterator ci;
640 >    Molecule* mol;
641 >    Atom* atom;
642 >    CutoffGroup* cg;
643 >    mpiSimData parallelData;
644 >    int isError;
645  
646 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
647  
648 < void SimInfo::checkCutOffs( void ){
649 <  
650 <  if( boxIsInit ){
651 <    
652 <    //we need to check cutOffs against the box
653 <    
654 <    if( rCut > maxCutoff ){
655 <      sprintf( painCave.errMsg,
656 <               "cutoffRadius is too large for the current periodic box.\n"
657 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
658 <               "\tThis is larger than half of at least one of the\n"
659 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
660 <               "\n"
661 <               "\t[ %G %G %G ]\n"
662 <               "\t[ %G %G %G ]\n"
663 <               "\t[ %G %G %G ]\n",
664 <               rCut, currentTime,
665 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
666 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
667 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
668 <      painCave.severity = OOPSE_ERROR;
669 <      painCave.isFatal = 1;
670 <      simError();
671 <    }    
672 <  } else {
673 <    // initialize this stuff before using it, OK?
674 <    sprintf( painCave.errMsg,
675 <             "Trying to check cutoffs without a box.\n"
676 <             "\tOOPSE should have better programmers than that.\n" );
677 <    painCave.severity = OOPSE_ERROR;
678 <    painCave.isFatal = 1;
679 <    simError();      
680 <  }
681 <  
648 >        //local index(index in DataStorge) of atom is important
649 >        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
650 >            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
651 >        }
652 >
653 >        //local index of cutoff group is trivial, it only depends on the order of travesing
654 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
655 >            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
656 >        }        
657 >        
658 >    }
659 >
660 >    //fill up mpiSimData struct
661 >    parallelData.nMolGlobal = getNGlobalMolecules();
662 >    parallelData.nMolLocal = getNMolecules();
663 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
664 >    parallelData.nAtomsLocal = getNAtoms();
665 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
666 >    parallelData.nGroupsLocal = getNCutoffGroups();
667 >    parallelData.myNode = worldRank;
668 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors));
669 >
670 >    //pass mpiSimData struct and index arrays to fortran
671 >    setFsimParallel(parallelData, &(parallelData->nAtomsLocal),
672 >                    &localToGlobalAtomIndex[0],  &(parallelData->nGroupsLocal),
673 >                    &localToGlobalCutoffGroupIndex[0], &isError);
674 >
675 >    if (isError) {
676 >        sprintf(painCave.errMsg,
677 >                "mpiRefresh errror: fortran didn't like something we gave it.\n");
678 >        painCave.isFatal = 1;
679 >        simError();
680 >    }
681 >
682 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
683 >    MPIcheckPoint();
684 >
685 >
686   }
687  
688 < void SimInfo::addProperty(GenericData* prop){
688 > #endif
689  
690 <  map<string, GenericData*>::iterator result;
691 <  result = properties.find(prop->getID());
692 <  
693 <  //we can't simply use  properties[prop->getID()] = prop,
694 <  //it will cause memory leak if we already contain a propery which has the same name of prop
695 <  
696 <  if(result != properties.end()){
690 > double SimInfo::calcMaxCutoffRadius() {
691 >
692 >
693 >    std::vector<AtomType*> atomTypes;
694 >    std::vector<AtomType*>::iterator i;
695 >    std::vector<double> cutoffRadius;
696 >
697 >    //get the unique atom types
698 >    atomTypes = getUniqueAtomTypes();
699 >
700 >    //query the max cutoff radius among these atom types
701 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
702 >        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
703 >    }
704 >
705 >    double maxCutoffRadius = std::max_element(cutoffRadius.begin(), cutoffRadius.end());
706 > #ifdef IS_MPI
707 >    //pick the max cutoff radius among the processors
708 > #endif
709 >
710 >    return maxCutoffRadius;
711 > }
712 >
713 > void SimInfo::setupCutoff() {
714 >    double rcut_;  //cutoff radius
715 >    double rsw_; //switching radius
716      
717 <    delete (*result).second;
718 <    (*result).second = prop;
719 <      
720 <  }
721 <  else{
717 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
718 >        
719 >        if (!globals_->haveRcut()){
720 >            sprintf(painCave.errMsg,
721 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
722 >                "\tOOPSE will use a default value of 15.0 angstroms"
723 >                "\tfor the cutoffRadius.\n");
724 >            painCave.isFatal = 0;
725 >            simError();
726 >            rcut_ = 15.0;
727 >        } else{
728 >            rcut_ = globals_->getRcut();
729 >        }
730  
731 <    properties[prop->getID()] = prop;
731 >        if (!globals_->haveRsw()){
732 >            sprintf(painCave.errMsg,
733 >                "SimCreator Warning: No value was set for switchingRadius.\n"
734 >                "\tOOPSE will use a default value of\n"
735 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
736 >            painCave.isFatal = 0;
737 >            simError();
738 >            rsw_ = 0.95 * rcut_;
739 >        } else{
740 >            rsw_ = globals_->getRsw();
741 >        }
742  
743 <  }
743 >    } else {
744 >        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
745 >        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
746 >        
747 >        if (globals_->haveRcut()) {
748 >            rcut_ = globals_->getRcut();
749 >        } else {
750 >            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
751 >            rcut_ = calcMaxCutoffRadius();
752 >        }
753 >
754 >        if (globals_->haveRsw()) {
755 >            rsw_  = globals_->getRsw()
756 >        } else {
757 >            rsw_ = rcut_;
758 >        }
759      
760 +    }
761 +        
762 +    double rnblist = rcut_ + 1; // skin of neighbor list
763 +
764 +    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
765 +    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
766   }
767  
768 < GenericData* SimInfo::getProperty(const string& propName){
769 <
577 <  map<string, GenericData*>::iterator result;
578 <  
579 <  //string lowerCaseName = ();
580 <  
581 <  result = properties.find(propName);
582 <  
583 <  if(result != properties.end())
584 <    return (*result).second;  
585 <  else  
586 <    return NULL;  
768 > void SimInfo::addProperty(GenericData* genData) {
769 >    properties_.addProperty(genData);  
770   }
771  
772 + void SimInfo::removeProperty(const std::string& propName) {
773 +    properties_.removeProperty(propName);  
774 + }
775  
776 < void SimInfo::getFortranGroupArrays(SimInfo* info,
777 <                                    vector<int>& FglobalGroupMembership,
778 <                                    vector<double>& mfact){
593 <  
594 <  Molecule* myMols;
595 <  Atom** myAtoms;
596 <  int numAtom;
597 <  double mtot;
598 <  int numMol;
599 <  int numCutoffGroups;
600 <  CutoffGroup* myCutoffGroup;
601 <  vector<CutoffGroup*>::iterator iterCutoff;
602 <  Atom* cutoffAtom;
603 <  vector<Atom*>::iterator iterAtom;
604 <  int atomIndex;
605 <  double totalMass;
606 <  
607 <  mfact.clear();
608 <  FglobalGroupMembership.clear();
609 <  
776 > void SimInfo::clearProperties() {
777 >    properties_.clearProperties();
778 > }
779  
780 <  // Fix the silly fortran indexing problem
781 < #ifdef IS_MPI
782 <  numAtom = mpiSim->getNAtomsGlobal();
783 < #else
784 <  numAtom = n_atoms;
785 < #endif
786 <  for (int i = 0; i < numAtom; i++)
618 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619 <  
780 > std::vector<std::string> SimInfo::getPropertyNames() {
781 >    return properties_.getPropertyNames();  
782 > }
783 >      
784 > std::vector<GenericData*> SimInfo::getProperties() {
785 >    return properties_.getProperties();
786 > }
787  
788 <  myMols = info->molecules;
789 <  numMol = info->n_mol;
790 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
788 > GenericData* SimInfo::getPropertyByName(const std::string& propName) {
789 >    return properties_.getPropertyByName(propName);
790 > }
791  
629      totalMass = myCutoffGroup->getMass();
630      
631      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
632          cutoffAtom != NULL;
633          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
634        mfact.push_back(cutoffAtom->getMass()/totalMass);
635      }  
636    }
637  }
792  
793 + std::ostream& operator <<(ostream& o, SimInfo& info) {
794 +
795 +    return o;
796   }
797 +
798 + }//end namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines