ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/OOPSE-3.0/src/brains/SimInfo.cpp (file contents), Revision 1492 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/new_design/OOPSE-3.0/src/brains/SimInfo.cpp (file contents), Revision 1807 by tim, Tue Nov 30 22:43:51 2004 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 > *
4 > * Contact: oopse@oopse.org
5 > *
6 > * This program is free software; you can redistribute it and/or
7 > * modify it under the terms of the GNU Lesser General Public License
8 > * as published by the Free Software Foundation; either version 2.1
9 > * of the License, or (at your option) any later version.
10 > * All we ask is that proper credit is given for our work, which includes
11 > * - but is not limited to - adding the above copyright notice to the beginning
12 > * of your source code files, and to any copyright notice that you may distribute
13 > * with programs based on this work.
14 > *
15 > * This program is distributed in the hope that it will be useful,
16 > * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 > * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 > * GNU Lesser General Public License for more details.
19 > *
20 > * You should have received a copy of the GNU Lesser General Public License
21 > * along with this program; if not, write to the Free Software
22 > * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 > *
24 > */
25  
26 < #include <iostream>
27 < using namespace std;
26 > /**
27 > * @file SimInfo.cpp
28 > * @author    tlin
29 > * @date  11/02/2004
30 > * @version 1.0
31 > */
32  
33 + #include <algorithm>
34 +
35   #include "brains/SimInfo.hpp"
36 < #define __C
37 < #include "brains/fSimulation.h"
36 > #include "primitives/Molecule.hpp"
37 > #include "UseTheForce/doForces_interface.h"
38 > #include "UseTheForce/notifyCutoffs_interface.h"
39 > #include "utils/MemoryUtils.hpp"
40   #include "utils/simError.h"
41  
42 < #include "UseTheForce/fortranWrappers.hpp"
42 > namespace oopse {
43  
44 < #include "math/MatVec3.h"
44 > SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
45 >                                ForceField* ff, Globals* globals) :
46 >                                forceField_(ff), globals_(globals), nAtoms_(0), nBonds_(0),
47 >                                nBends_(0), nTorsions_(0), nRigidBodies_(0), nIntegrableObjects_(0),
48 >                                nCutoffGroups_(0), nConstraints_(0), nZconstraint_(0), sman_(NULL),
49 >                                fortranInitialized_(false) {
50  
51 < #ifdef IS_MPI
52 < #include "brains/mpiSimulation.hpp"
53 < #endif
51 >    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
52 >    MoleculeStamp* molStamp;
53 >    int nMolWithSameStamp;
54 >    int nCutoffAtoms; // number of atoms belong to cutoff groups
55 >    int nGroups;          //total cutoff groups defined in meta-data file
56 >    CutoffGroupStamp* cgStamp;
57 >    int nAtomsInGroups;
58 >    int nCutoffGroupsInStamp;
59 >    
60 >    RigidBodyStamp* rbStamp;
61 >    int nAtomsInRigidBodies;
62 >    int nRigidBodiesInStamp;
63 >    int nRigidAtoms;
64 >    int nRigidBodies;
65 >        
66 >    nGlobalAtoms_ =  0;
67 >    
68 >    nGroups = 0;
69 >    nCutoffAtoms = 0;
70 >    nRigidBodies = 0;
71 >    
72 >    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
73 >        molStamp = i->first;
74 >        nMolWithSameStamp = i->second;
75 >        
76 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
77  
78 < inline double roundMe( double x ){
79 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23 < }
24 <          
25 < inline double min( double a, double b ){
26 <  return (a < b ) ? a : b;
27 < }
78 >        //calculate atoms in molecules
79 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
80  
29 SimInfo* currentInfo;
81  
82 < SimInfo::SimInfo(){
82 >        //calculate atoms in cutoff groups
83 >        nAtomsInGroups = 0;
84 >        nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
85 >        
86 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
87 >            cgStamp = molStamp->getCutoffGroup(j);
88 >            nAtomsInGroups += cgStamp->getNMembers();
89 >        }
90  
91 <  n_constraints = 0;
92 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
91 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
92 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
93  
94 <  haveRcut = 0;
95 <  haveRsw = 0;
96 <  boxIsInit = 0;
97 <  
98 <  resetTime = 1e99;
94 >        //calculate atoms in rigid bodies
95 >        nAtomsInRigidBodies = 0;
96 >        nRigidBodiesInStamp = molStamp->getNCutoffGroups();
97 >        
98 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
99 >            rbStamp = molStamp->getRigidBody(j);
100 >            nRigidBodiesInStamp += rbStamp->getNMembers();
101 >        }
102  
103 <  orthoRhombic = 0;
104 <  orthoTolerance = 1E-6;
105 <  useInitXSstate = true;
103 >        nRigidBodies += nRigidBodiesInStamp * nMolWithSameStamp;
104 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
105 >        
106 >    }
107  
108 <  usePBC = 0;
109 <  useLJ = 0;
110 <  useSticky = 0;
111 <  useCharges = 0;
112 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
108 >    //every free atom (atom does not belong to cutoff groups) is a cutoff group
109 >    //therefore the total number of cutoff groups in the system is equal to
110 >    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
111 >    //file plus the number of cutoff groups defined in meta-data file
112 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
113  
114 <  haveCutoffGroups = false;
114 >    //every free atom (atom does not belong to rigid bodies) is a rigid body
115 >    //therefore the total number of cutoff groups in the system is equal to
116 >    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
117 >    //file plus the number of  rigid bodies defined in meta-data file
118 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nRigidBodies;
119  
120 <  excludes = Exclude::Instance();
120 >    //initialize globalGroupMembership_, every element of this array will be 0
121 >    globalGroupMembership_.insert(globalGroupMembership_.end(), nGlobalAtoms_, 0);
122  
123 <  myConfiguration = new SimState();
123 >    nGlobalMols_ = molStampIds_.size();
124  
125 <  has_minimizer = false;
126 <  the_minimizer =NULL;
125 > #ifdef IS_MPI    
126 >    molToProcMap_.resize(nGlobalMols_);
127 > #endif
128 >    
129 > }
130  
131 <  ngroup = 0;
131 > SimInfo::~SimInfo() {
132 >    //MemoryUtils::deleteVectorOfPointer(molecules_);
133  
134 <  wrapMeSimInfo( this );
134 >    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
135 >    
136 >    delete sman_;
137 >    delete globals_;
138 >    delete forceField_;
139 >
140   }
141  
142  
143 < SimInfo::~SimInfo(){
143 > bool SimInfo::addMolecule(Molecule* mol) {
144 >    MoleculeIterator i;
145  
146 <  delete myConfiguration;
146 >    i = molecules_.find(mol->getGlobalIndex());
147 >    if (i != molecules_.end() ) {
148  
149 <  map<string, GenericData*>::iterator i;
150 <  
151 <  for(i = properties.begin(); i != properties.end(); i++)
152 <    delete (*i).second;
149 >        molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
150 >        
151 >        nAtoms_ += mol->getNAtoms();
152 >        nBonds_ += mol->getNBonds();
153 >        nBends_ += mol->getNBends();
154 >        nTorsions_ += mol->getNTorsions();
155 >        nRigidBodies_ += mol->getNRigidBodies();
156 >        nIntegrableObjects_ += mol->getNIntegrableObjects();
157 >        nCutoffGroups_ += mol->getNCutoffGroups();
158 >        nConstraints_ += mol->getNConstraints();
159  
160 +        return true;
161 +    } else {
162 +        return false;
163 +    }
164   }
165  
166 < void SimInfo::setBox(double newBox[3]) {
167 <  
168 <  int i, j;
97 <  double tempMat[3][3];
166 > bool SimInfo::removeMolecule(Molecule* mol) {
167 >    MoleculeIterator i;
168 >    i = molecules_.find(mol->getGlobalIndex());
169  
170 <  for(i=0; i<3; i++)
100 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
170 >    if (i != molecules_.end() ) {
171  
172 <  tempMat[0][0] = newBox[0];
173 <  tempMat[1][1] = newBox[1];
174 <  tempMat[2][2] = newBox[2];
172 >        assert(mol == i->second);
173 >        
174 >        nAtoms_ -= mol->getNAtoms();
175 >        nBonds_ -= mol->getNBonds();
176 >        nBends_ -= mol->getNBends();
177 >        nTorsions_ -= mol->getNTorsions();
178 >        nRigidBodies_ -= mol->getNRigidBodies();
179 >        nIntegrableObjects_ -= mol->getNIntegrableObjects();
180 >        nCutoffGroups_ -= mol->getNCutoffGroups();
181 >        nConstraints_ -= mol->getNConstraints();
182  
183 <  setBoxM( tempMat );
183 >        molecules_.erase(mol->getGlobalIndex());
184  
185 < }
185 >        delete mol;
186 >        
187 >        return true;
188 >    } else {
189 >        return false;
190 >    }
191  
110 void SimInfo::setBoxM( double theBox[3][3] ){
111  
112  int i, j;
113  double FortranHmat[9]; // to preserve compatibility with Fortran the
114                         // ordering in the array is as follows:
115                         // [ 0 3 6 ]
116                         // [ 1 4 7 ]
117                         // [ 2 5 8 ]
118  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
192  
193 <  if( !boxIsInit ) boxIsInit = 1;
193 > }    
194  
195 <  for(i=0; i < 3; i++)
196 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
197 <  
198 <  calcBoxL();
199 <  calcHmatInv();
195 >        
196 > Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
197 >    i = molecules_.begin();
198 >    return i == molecules_.end() ? NULL : i->second;
199 > }    
200  
201 <  for(i=0; i < 3; i++) {
202 <    for (j=0; j < 3; j++) {
203 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
132 <    }
133 <  }
134 <
135 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
136 <
201 > Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
202 >    ++i;
203 >    return i == molecules_.end() ? NULL : i->second;    
204   }
138
205  
140 void SimInfo::getBoxM (double theBox[3][3]) {
206  
207 <  int i, j;
208 <  for(i=0; i<3; i++)
209 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
210 < }
207 > void SimInfo::calcNdf() {
208 >    int ndf_local;
209 >    MoleculeIterator i;
210 >    std::vector<StuntDouble*>::iterator j;
211 >    Molecule* mol;
212 >    StuntDouble* integrableObject;
213  
214 +    ndf_local = 0;
215 +    
216 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
217 +        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
218 +               integrableObject = mol->nextIntegrableObject(j)) {
219  
220 < void SimInfo::scaleBox(double scale) {
149 <  double theBox[3][3];
150 <  int i, j;
220 >            ndf_local += 3;
221  
222 <  // cerr << "Scaling box by " << scale << "\n";
222 >            if (integrableObject->isDirectional()) {
223 >                if (integrableObject->isLinear()) {
224 >                    ndf_local += 2;
225 >                } else {
226 >                    ndf_local += 3;
227 >                }
228 >            }
229 >            
230 >        }//end for (integrableObject)
231 >    }// end for (mol)
232 >    
233 >    // n_constraints is local, so subtract them on each processor
234 >    ndf_local -= nConstraints_;
235  
236 <  for(i=0; i<3; i++)
237 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
236 > #ifdef IS_MPI
237 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
238 > #else
239 >    ndf_ = ndf_local;
240 > #endif
241  
242 <  setBoxM(theBox);
242 >    // nZconstraints_ is global, as are the 3 COM translations for the
243 >    // entire system:
244 >    ndf_ = ndf_ - 3 - nZconstraint_;
245  
246   }
247  
248 < void SimInfo::calcHmatInv( void ) {
249 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
248 > void SimInfo::calcNdfRaw() {
249 >    int ndfRaw_local;
250  
251 <  invertMat3( Hmat, HmatInv );
251 >    MoleculeIterator i;
252 >    std::vector<StuntDouble*>::iterator j;
253 >    Molecule* mol;
254 >    StuntDouble* integrableObject;
255  
256 <  // check to see if Hmat is orthorhombic
257 <  
258 <  oldOrtho = orthoRhombic;
256 >    // Raw degrees of freedom that we have to set
257 >    ndfRaw_local = 0;
258 >    
259 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
260 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
261 >               integrableObject = mol->nextIntegrableObject(j)) {
262  
263 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
263 >            ndfRaw_local += 3;
264  
265 <  orthoRhombic = 1;
266 <  
267 <  for (i = 0; i < 3; i++ ) {
268 <    for (j = 0 ; j < 3; j++) {
269 <      if (i != j) {
270 <        if (orthoRhombic) {
271 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
272 <        }        
273 <      }
265 >            if (integrableObject->isDirectional()) {
266 >                if (integrableObject->isLinear()) {
267 >                    ndfRaw_local += 2;
268 >                } else {
269 >                    ndfRaw_local += 3;
270 >                }
271 >            }
272 >            
273 >        }
274      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
275      
276 <    if( orthoRhombic ) {
277 <      sprintf( painCave.errMsg,
278 <               "OOPSE is switching from the default Non-Orthorhombic\n"
279 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
280 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
276 > #ifdef IS_MPI
277 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
278 > #else
279 >    ndfRaw_ = ndfRaw_local;
280 > #endif
281   }
282  
283 < void SimInfo::calcBoxL( void ){
283 > void SimInfo::calcNdfTrans() {
284 >    int ndfTrans_local;
285  
286 <  double dx, dy, dz, dsq;
286 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
287  
224  // boxVol = Determinant of Hmat
288  
289 <  boxVol = matDet3( Hmat );
289 > #ifdef IS_MPI
290 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
291 > #else
292 >    ndfTrans_ = ndfTrans_local;
293 > #endif
294  
295 <  // boxLx
296 <  
297 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
295 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
296 >
297 > }
298  
299 <  // boxLy
300 <  
301 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
302 <  dsq = dx*dx + dy*dy + dz*dz;
303 <  boxL[1] = sqrt( dsq );
304 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
299 > void SimInfo::addExcludePairs(Molecule* mol) {
300 >    std::vector<Bond*>::iterator bondIter;
301 >    std::vector<Bend*>::iterator bendIter;
302 >    std::vector<Torsion*>::iterator torsionIter;
303 >    Bond* bond;
304 >    Bend* bend;
305 >    Torsion* torsion;
306 >    int a;
307 >    int b;
308 >    int c;
309 >    int d;
310 >    
311 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
312 >        a = bond->getAtomA()->getGlobalIndex();
313 >        b = bond->getAtomB()->getGlobalIndex();        
314 >        exclude_.addPair(a, b);
315 >    }
316  
317 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
318 +        a = bend->getAtomA()->getGlobalIndex();
319 +        b = bend->getAtomB()->getGlobalIndex();        
320 +        c = bend->getAtomC()->getGlobalIndex();
321  
322 <  // boxLz
323 <  
324 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
325 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
322 >        exclude_.addPair(a, b);
323 >        exclude_.addPair(a, c);
324 >        exclude_.addPair(b, c);        
325 >    }
326  
327 <  //calculate the max cutoff
328 <  maxCutoff =  calcMaxCutOff();
329 <  
330 <  checkCutOffs();
327 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
328 >        a = torsion->getAtomA()->getGlobalIndex();
329 >        b = torsion->getAtomB()->getGlobalIndex();        
330 >        c = torsion->getAtomC()->getGlobalIndex();        
331 >        d = torsion->getAtomD()->getGlobalIndex();        
332  
333 +        exclude_.addPair(a, b);
334 +        exclude_.addPair(a, c);
335 +        exclude_.addPair(a, d);
336 +        exclude_.addPair(b, c);
337 +        exclude_.addPair(b, d);
338 +        exclude_.addPair(c, d);        
339 +    }
340 +
341 +    
342   }
343  
344 + void SimInfo::removeExcludePairs(Molecule* mol) {
345 +    std::vector<Bond*>::iterator bondIter;
346 +    std::vector<Bend*>::iterator bendIter;
347 +    std::vector<Torsion*>::iterator torsionIter;
348 +    Bond* bond;
349 +    Bend* bend;
350 +    Torsion* torsion;
351 +    int a;
352 +    int b;
353 +    int c;
354 +    int d;
355 +    
356 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
357 +        a = bond->getAtomA()->getGlobalIndex();
358 +        b = bond->getAtomB()->getGlobalIndex();        
359 +        exclude_.removePair(a, b);
360 +    }
361  
362 < double SimInfo::calcMaxCutOff(){
362 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
363 >        a = bend->getAtomA()->getGlobalIndex();
364 >        b = bend->getAtomB()->getGlobalIndex();        
365 >        c = bend->getAtomC()->getGlobalIndex();
366  
367 <  double ri[3], rj[3], rk[3];
368 <  double rij[3], rjk[3], rki[3];
369 <  double minDist;
367 >        exclude_.removePair(a, b);
368 >        exclude_.removePair(a, c);
369 >        exclude_.removePair(b, c);        
370 >    }
371  
372 <  ri[0] = Hmat[0][0];
373 <  ri[1] = Hmat[1][0];
374 <  ri[2] = Hmat[2][0];
372 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
373 >        a = torsion->getAtomA()->getGlobalIndex();
374 >        b = torsion->getAtomB()->getGlobalIndex();        
375 >        c = torsion->getAtomC()->getGlobalIndex();        
376 >        d = torsion->getAtomD()->getGlobalIndex();        
377  
378 <  rj[0] = Hmat[0][1];
379 <  rj[1] = Hmat[1][1];
380 <  rj[2] = Hmat[2][1];
378 >        exclude_.removePair(a, b);
379 >        exclude_.removePair(a, c);
380 >        exclude_.removePair(a, d);
381 >        exclude_.removePair(b, c);
382 >        exclude_.removePair(b, d);
383 >        exclude_.removePair(c, d);        
384 >    }
385  
386 <  rk[0] = Hmat[0][2];
273 <  rk[1] = Hmat[1][2];
274 <  rk[2] = Hmat[2][2];
275 <    
276 <  crossProduct3(ri, rj, rij);
277 <  distXY = dotProduct3(rk,rij) / norm3(rij);
386 > }
387  
279  crossProduct3(rj,rk, rjk);
280  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
388  
389 <  crossProduct3(rk,ri, rki);
390 <  distZX = dotProduct3(rj,rki) / norm3(rki);
389 > void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
390 >    int curStampId;
391  
392 <  minDist = min(min(distXY, distYZ), distZX);
393 <  return minDist/2;
394 <  
392 >    //index from 0
393 >    curStampId = molStampIds_.size();
394 >
395 >    moleculeStamps_.push_back(molStamp);
396 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
397   }
398  
399 < void SimInfo::wrapVector( double thePos[3] ){
399 > void SimInfo::update() {
400  
401 <  int i;
293 <  double scaled[3];
401 >    setupSimType();
402  
403 <  if( !orthoRhombic ){
404 <    // calc the scaled coordinates.
405 <  
403 > #ifdef IS_MPI
404 >    setupFortranParallel();
405 > #endif
406  
407 <    matVecMul3(HmatInv, thePos, scaled);
300 <    
301 <    for(i=0; i<3; i++)
302 <      scaled[i] -= roundMe(scaled[i]);
303 <    
304 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
305 <    
306 <    matVecMul3(Hmat, scaled, thePos);
407 >    setupFortranSim();
408  
409 <  }
410 <  else{
411 <    // calc the scaled coordinates.
409 >    //setup fortran force field
410 >    /** @deprecate */    
411 >    int isError = 0;
412 >    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
413 >    if(isError){
414 >        sprintf( painCave.errMsg,
415 >         "ForceField error: There was an error initializing the forceField in fortran.\n" );
416 >        painCave.isFatal = 1;
417 >        simError();
418 >    }
419 >  
420      
421 <    for(i=0; i<3; i++)
422 <      scaled[i] = thePos[i]*HmatInv[i][i];
423 <    
424 <    // wrap the scaled coordinates
425 <    
426 <    for(i=0; i<3; i++)
427 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
421 >    setupCutoff();
422 >
423 >    calcNdf();
424 >    calcNdfRaw();
425 >    calcNdfTrans();
426 >
427 >    fortranInitialized_ = true;
428   }
429  
430 + std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
431 +    SimInfo::MoleculeIterator mi;
432 +    Molecule* mol;
433 +    Molecule::AtomIterator ai;
434 +    Atom* atom;
435 +    std::set<AtomType*> atomTypes;
436  
437 < int SimInfo::getNDF(){
330 <  int ndf_local;
437 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
438  
439 <  ndf_local = 0;
440 <  
441 <  for(int i = 0; i < integrableObjects.size(); i++){
442 <    ndf_local += 3;
336 <    if (integrableObjects[i]->isDirectional()) {
337 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
439 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
440 >            atomTypes.insert(atom->getAtomType());
441 >        }
442 >        
443      }
342  }
444  
445 <  // n_constraints is local, so subtract them on each processor:
445 >    return atomTypes;        
446 > }
447  
448 <  ndf_local -= n_constraints;
448 > void SimInfo::setupSimType() {
449 >    std::set<AtomType*>::iterator i;
450 >    std::set<AtomType*> atomTypes;
451 >    atomTypes = getUniqueAtomTypes();
452 >    
453 >    int useLennardJones = 0;
454 >    int useElectrostatic = 0;
455 >    int useEAM = 0;
456 >    int useCharge = 0;
457 >    int useDirectional = 0;
458 >    int useDipole = 0;
459 >    int useGayBerne = 0;
460 >    int useSticky = 0;
461 >    int useShape = 0;
462 >    int useFLARB = 0; //it is not in AtomType yet
463 >    int useDirectionalAtom = 0;    
464 >    int useElectrostatics = 0;
465 >    //usePBC and useRF are from globals
466 >    bool usePBC = globals_->getPBC();
467 >    bool useRF = globals_->getUseRF();
468  
469 < #ifdef IS_MPI
470 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
471 < #else
472 <  ndf = ndf_local;
473 < #endif
469 >    //loop over all of the atom types
470 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
471 >        useLennardJones |= (*i)->isLennardJones();
472 >        useElectrostatic |= (*i)->isElectrostatic();
473 >        useEAM |= (*i)->isEAM();
474 >        useCharge |= (*i)->isCharge();
475 >        useDirectional |= (*i)->isDirectional();
476 >        useDipole |= (*i)->isDipole();
477 >        useGayBerne |= (*i)->isGayBerne();
478 >        useSticky |= (*i)->isSticky();
479 >        useShape |= (*i)->isShape();
480 >    }
481  
482 <  // nZconstraints is global, as are the 3 COM translations for the
483 <  // entire system:
482 >    if (useSticky || useDipole || useGayBerne || useShape) {
483 >        useDirectionalAtom = 1;
484 >    }
485  
486 <  ndf = ndf - 3 - nZconstraints;
486 >    if (useCharge || useDipole) {
487 >        useElectrostatics = 1;
488 >    }
489  
490 <  return ndf;
491 < }
490 > #ifdef IS_MPI    
491 >    int temp;
492  
493 < int SimInfo::getNDFraw() {
494 <  int ndfRaw_local;
493 >    temp = usePBC;
494 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
495  
496 <  // Raw degrees of freedom that we have to set
497 <  ndfRaw_local = 0;
496 >    temp = useDirectionalAtom;
497 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
498  
499 <  for(int i = 0; i < integrableObjects.size(); i++){
500 <    ndfRaw_local += 3;
370 <    if (integrableObjects[i]->isDirectional()) {
371 <       if (integrableObjects[i]->isLinear())
372 <        ndfRaw_local += 2;
373 <      else
374 <        ndfRaw_local += 3;
375 <    }
376 <  }
377 <    
378 < #ifdef IS_MPI
379 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 < #else
381 <  ndfRaw = ndfRaw_local;
382 < #endif
499 >    temp = useLennardJones;
500 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
501  
502 <  return ndfRaw;
503 < }
502 >    temp = useElectrostatics;
503 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
504  
505 < int SimInfo::getNDFtranslational() {
506 <  int ndfTrans_local;
505 >    temp = useCharge;
506 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
507  
508 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
508 >    temp = useDipole;
509 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
510  
511 +    temp = useSticky;
512 +    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
513  
514 < #ifdef IS_MPI
515 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 < #else
396 <  ndfTrans = ndfTrans_local;
397 < #endif
514 >    temp = useGayBerne;
515 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
516  
517 <  ndfTrans = ndfTrans - 3 - nZconstraints;
517 >    temp = useEAM;
518 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
519  
520 <  return ndfTrans;
521 < }
520 >    temp = useShape;
521 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
522  
523 < int SimInfo::getTotIntegrableObjects() {
524 <  int nObjs_local;
406 <  int nObjs;
523 >    temp = useFLARB;
524 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
525  
526 <  nObjs_local =  integrableObjects.size();
526 >    temp = useRF;
527 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
528 >    
529 > #endif
530  
531 +    fInfo_.SIM_uses_PBC = usePBC;    
532 +    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
533 +    fInfo_.SIM_uses_LennardJones = useLennardJones;
534 +    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
535 +    fInfo_.SIM_uses_Charges = useCharge;
536 +    fInfo_.SIM_uses_Dipoles = useDipole;
537 +    fInfo_.SIM_uses_Sticky = useSticky;
538 +    fInfo_.SIM_uses_GayBerne = useGayBerne;
539 +    fInfo_.SIM_uses_EAM = useEAM;
540 +    fInfo_.SIM_uses_Shapes = useShape;
541 +    fInfo_.SIM_uses_FLARB = useFLARB;
542 +    fInfo_.SIM_uses_RF = useRF;
543  
544 < #ifdef IS_MPI
412 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
413 < #else
414 <  nObjs = nObjs_local;
415 < #endif
544 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
545  
546 +        if (globals_->haveDielectric()) {
547 +            fInfo_.dielect = globals_->getDielectric();
548 +        } else {
549 +            sprintf(painCave.errMsg,
550 +                    "SimSetup Error: No Dielectric constant was set.\n"
551 +                    "\tYou are trying to use Reaction Field without"
552 +                    "\tsetting a dielectric constant!\n");
553 +            painCave.isFatal = 1;
554 +            simError();
555 +        }
556 +        
557 +    } else {
558 +        fInfo_.dielect = 0.0;
559 +    }
560  
418  return nObjs;
561   }
562  
563 < void SimInfo::refreshSim(){
563 > void SimInfo::setupFortranSim() {
564 >    int isError;
565 >    int nExclude;
566 >    std::vector<int> fortranGlobalGroupMembership;
567 >    
568 >    nExclude = exclude_.getSize();
569 >    isError = 0;
570  
571 <  simtype fInfo;
572 <  int isError;
573 <  int n_global;
574 <  int* excl;
571 >    //globalGroupMembership_ is filled by SimCreator    
572 >    for (int i = 0; i < nGlobalAtoms_; i++) {
573 >        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
574 >    }
575  
576 <  fInfo.dielect = 0.0;
576 >    //calculate mass ratio of cutoff group
577 >    std::vector<double> mfact;
578 >    SimInfo::MoleculeIterator mi;
579 >    Molecule* mol;
580 >    Molecule::CutoffGroupIterator ci;
581 >    CutoffGroup* cg;
582 >    Molecule::AtomIterator ai;
583 >    Atom* atom;
584 >    double totalMass;
585  
586 <  if( useDipoles ){
587 <    if( useReactionField )fInfo.dielect = dielectric;
588 <  }
586 >    //to avoid memory reallocation, reserve enough space for mfact
587 >    mfact.reserve(getNCutoffGroups());
588 >    
589 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
590 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
591  
592 <  fInfo.SIM_uses_PBC = usePBC;
593 <  //fInfo.SIM_uses_LJ = 0;
594 <  fInfo.SIM_uses_LJ = useLJ;
595 <  fInfo.SIM_uses_sticky = useSticky;
438 <  //fInfo.SIM_uses_sticky = 0;
439 <  fInfo.SIM_uses_charges = useCharges;
440 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
592 >            totalMass = cg->getMass();
593 >            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
594 >                        mfact.push_back(atom->getMass()/totalMass);
595 >            }
596  
597 <  n_exclude = excludes->getSize();
598 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
597 >        }      
598 >    }
599  
600 <  if( isError ){
600 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
601 >    std::vector<int> identArray;
602 >
603 >    //to avoid memory reallocation, reserve enough space identArray
604 >    identArray.reserve(getNAtoms());
605      
606 <    sprintf( painCave.errMsg,
607 <             "There was an error setting the simulation information in fortran.\n" );
608 <    painCave.isFatal = 1;
609 <    painCave.severity = OOPSE_ERROR;
610 <    simError();
611 <  }
612 <  
606 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
607 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
608 >            identArray.push_back(atom->getIdent());
609 >        }
610 >    }    
611 >
612 >    //fill molMembershipArray
613 >    //molMembershipArray is filled by SimCreator    
614 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
615 >    for (int i = 0; i < nGlobalAtoms_; i++) {
616 >        molMembershipArray.push_back(globalMolMembership_[i] + 1);
617 >    }
618 >    
619 >    //setup fortran simulation
620 >    //gloalExcludes and molMembershipArray should go away (They are never used)
621 >    //why the hell fortran need to know molecule?
622 >    //OOPSE = Object-Obfuscated Parallel Simulation Engine
623 >    int nGlobalExcludes = 0;
624 >    int* globalExcludes = NULL;
625 >    int* excludeList = exclude_.getExcludeList();
626 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
627 >                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
628 >                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
629 >
630 >    if( isError ){
631 >
632 >        sprintf( painCave.errMsg,
633 >                 "There was an error setting the simulation information in fortran.\n" );
634 >        painCave.isFatal = 1;
635 >        painCave.severity = OOPSE_ERROR;
636 >        simError();
637 >    }
638 >
639   #ifdef IS_MPI
640 <  sprintf( checkPointMsg,
641 <           "succesfully sent the simulation information to fortran.\n");
642 <  MPIcheckPoint();
640 >    sprintf( checkPointMsg,
641 >       "succesfully sent the simulation information to fortran.\n");
642 >    MPIcheckPoint();
643   #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
644   }
645  
486 void SimInfo::setDefaultRcut( double theRcut ){
487  
488  haveRcut = 1;
489  rCut = theRcut;
490  rList = rCut + 1.0;
491  
492  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 }
646  
647 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
647 > #ifdef IS_MPI
648 > void SimInfo::setupFortranParallel() {
649 >    
650 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
651 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
652 >    std::vector<int> localToGlobalCutoffGroupIndex;
653 >    SimInfo::MoleculeIterator mi;
654 >    Molecule::AtomIterator ai;
655 >    Molecule::CutoffGroupIterator ci;
656 >    Molecule* mol;
657 >    Atom* atom;
658 >    CutoffGroup* cg;
659 >    mpiSimData parallelData;
660 >    int isError;
661  
662 <  rSw = theRsw;
498 <  setDefaultRcut( theRcut );
499 < }
662 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
663  
664 +        //local index(index in DataStorge) of atom is important
665 +        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
666 +            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
667 +        }
668  
669 < void SimInfo::checkCutOffs( void ){
670 <  
671 <  if( boxIsInit ){
672 <    
673 <    //we need to check cutOffs against the box
674 <    
675 <    if( rCut > maxCutoff ){
676 <      sprintf( painCave.errMsg,
677 <               "cutoffRadius is too large for the current periodic box.\n"
678 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
679 <               "\tThis is larger than half of at least one of the\n"
680 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
681 <               "\n"
682 <               "\t[ %G %G %G ]\n"
683 <               "\t[ %G %G %G ]\n"
684 <               "\t[ %G %G %G ]\n",
685 <               rCut, currentTime,
686 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
687 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
688 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
689 <      painCave.severity = OOPSE_ERROR;
690 <      painCave.isFatal = 1;
691 <      simError();
692 <    }    
693 <  } else {
694 <    // initialize this stuff before using it, OK?
695 <    sprintf( painCave.errMsg,
696 <             "Trying to check cutoffs without a box.\n"
697 <             "\tOOPSE should have better programmers than that.\n" );
698 <    painCave.severity = OOPSE_ERROR;
699 <    painCave.isFatal = 1;
700 <    simError();      
701 <  }
535 <  
669 >        //local index of cutoff group is trivial, it only depends on the order of travesing
670 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
671 >            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
672 >        }        
673 >        
674 >    }
675 >
676 >    //fill up mpiSimData struct
677 >    parallelData.nMolGlobal = getNGlobalMolecules();
678 >    parallelData.nMolLocal = getNMolecules();
679 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
680 >    parallelData.nAtomsLocal = getNAtoms();
681 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
682 >    parallelData.nGroupsLocal = getNCutoffGroups();
683 >    parallelData.myNode = worldRank;
684 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors));
685 >
686 >    //pass mpiSimData struct and index arrays to fortran
687 >    setFsimParallel(parallelData, &(parallelData->nAtomsLocal),
688 >                    &localToGlobalAtomIndex[0],  &(parallelData->nGroupsLocal),
689 >                    &localToGlobalCutoffGroupIndex[0], &isError);
690 >
691 >    if (isError) {
692 >        sprintf(painCave.errMsg,
693 >                "mpiRefresh errror: fortran didn't like something we gave it.\n");
694 >        painCave.isFatal = 1;
695 >        simError();
696 >    }
697 >
698 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
699 >    MPIcheckPoint();
700 >
701 >
702   }
703  
704 < void SimInfo::addProperty(GenericData* prop){
704 > #endif
705  
706 <  map<string, GenericData*>::iterator result;
707 <  result = properties.find(prop->getID());
708 <  
709 <  //we can't simply use  properties[prop->getID()] = prop,
710 <  //it will cause memory leak if we already contain a propery which has the same name of prop
711 <  
712 <  if(result != properties.end()){
706 > double SimInfo::calcMaxCutoffRadius() {
707 >
708 >
709 >    std::set<AtomType*> atomTypes;
710 >    std::set<AtomType*>::iterator i;
711 >    std::vector<double> cutoffRadius;
712 >
713 >    //get the unique atom types
714 >    atomTypes = getUniqueAtomTypes();
715 >
716 >    //query the max cutoff radius among these atom types
717 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
718 >        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
719 >    }
720 >
721 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
722 > #ifdef IS_MPI
723 >    //pick the max cutoff radius among the processors
724 > #endif
725 >
726 >    return maxCutoffRadius;
727 > }
728 >
729 > void SimInfo::setupCutoff() {
730 >    double rcut_;  //cutoff radius
731 >    double rsw_; //switching radius
732      
733 <    delete (*result).second;
734 <    (*result).second = prop;
735 <      
736 <  }
737 <  else{
733 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
734 >        
735 >        if (!globals_->haveRcut()){
736 >            sprintf(painCave.errMsg,
737 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
738 >                "\tOOPSE will use a default value of 15.0 angstroms"
739 >                "\tfor the cutoffRadius.\n");
740 >            painCave.isFatal = 0;
741 >            simError();
742 >            rcut_ = 15.0;
743 >        } else{
744 >            rcut_ = globals_->getRcut();
745 >        }
746  
747 <    properties[prop->getID()] = prop;
747 >        if (!globals_->haveRsw()){
748 >            sprintf(painCave.errMsg,
749 >                "SimCreator Warning: No value was set for switchingRadius.\n"
750 >                "\tOOPSE will use a default value of\n"
751 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
752 >            painCave.isFatal = 0;
753 >            simError();
754 >            rsw_ = 0.95 * rcut_;
755 >        } else{
756 >            rsw_ = globals_->getRsw();
757 >        }
758  
759 <  }
759 >    } else {
760 >        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
761 >        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
762 >        
763 >        if (globals_->haveRcut()) {
764 >            rcut_ = globals_->getRcut();
765 >        } else {
766 >            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
767 >            rcut_ = calcMaxCutoffRadius();
768 >        }
769 >
770 >        if (globals_->haveRsw()) {
771 >            rsw_  = globals_->getRsw();
772 >        } else {
773 >            rsw_ = rcut_;
774 >        }
775      
776 +    }
777 +        
778 +    double rnblist = rcut_ + 1; // skin of neighbor list
779 +
780 +    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
781 +    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
782   }
783  
784 < GenericData* SimInfo::getProperty(const string& propName){
785 <
562 <  map<string, GenericData*>::iterator result;
563 <  
564 <  //string lowerCaseName = ();
565 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
784 > void SimInfo::addProperty(GenericData* genData) {
785 >    properties_.addProperty(genData);  
786   }
787  
788 + void SimInfo::removeProperty(const std::string& propName) {
789 +    properties_.removeProperty(propName);  
790 + }
791  
792 < void SimInfo::getFortranGroupArrays(SimInfo* info,
793 <                                    vector<int>& FglobalGroupMembership,
794 <                                    vector<double>& mfact){
578 <  
579 <  Molecule* myMols;
580 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
792 > void SimInfo::clearProperties() {
793 >    properties_.clearProperties();
794 > }
795  
796 <  // Fix the silly fortran indexing problem
797 < #ifdef IS_MPI
798 <  numAtom = mpiSim->getNAtomsGlobal();
799 < #else
800 <  numAtom = n_atoms;
801 < #endif
802 <  for (int i = 0; i < numAtom; i++)
603 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604 <  
796 > std::vector<std::string> SimInfo::getPropertyNames() {
797 >    return properties_.getPropertyNames();  
798 > }
799 >      
800 > std::vector<GenericData*> SimInfo::getProperties() {
801 >    return properties_.getProperties();
802 > }
803  
804 <  myMols = info->molecules;
805 <  numMol = info->n_mol;
806 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
804 > GenericData* SimInfo::getPropertyByName(const std::string& propName) {
805 >    return properties_.getPropertyByName(propName);
806 > }
807  
808 <      totalMass = myCutoffGroup->getMass();
809 <      
616 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617 <          cutoffAtom != NULL;
618 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
620 <      }  
621 <    }
622 <  }
808 > void SimInfo::setSnapshotManager(SnapshotManager* sman) {
809 >    sman_ = sman;
810  
811 +    Molecule* mol;
812 +    RigidBody* rb;
813 +    Atom* atom;
814 +    SimInfo::MoleculeIterator mi;
815 +    Molecule::RigidBodyIterator rbIter;
816 +    Molecule::AtomIterator atomIter;;
817 +
818 +    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
819 +        
820 +        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
821 +            atom->setSnapshotManager(sman_);
822 +        }
823 +        
824 +        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
825 +            rb->setSnapshotManager(sman_);
826 +        }
827 +    }    
828 +    
829   }
830 +
831 + std::ostream& operator <<(ostream& o, SimInfo& info) {
832 +
833 +    return o;
834 + }
835 +
836 + }//end namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines