ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/OOPSE-3.0/src/brains/SimInfo.cpp (file contents), Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/new_design/OOPSE-3.0/src/brains/SimInfo.cpp (file contents), Revision 1725 by tim, Wed Nov 10 22:01:06 2004 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 > *
4 > * Contact: oopse@oopse.org
5 > *
6 > * This program is free software; you can redistribute it and/or
7 > * modify it under the terms of the GNU Lesser General Public License
8 > * as published by the Free Software Foundation; either version 2.1
9 > * of the License, or (at your option) any later version.
10 > * All we ask is that proper credit is given for our work, which includes
11 > * - but is not limited to - adding the above copyright notice to the beginning
12 > * of your source code files, and to any copyright notice that you may distribute
13 > * with programs based on this work.
14 > *
15 > * This program is distributed in the hope that it will be useful,
16 > * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 > * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 > * GNU Lesser General Public License for more details.
19 > *
20 > * You should have received a copy of the GNU Lesser General Public License
21 > * along with this program; if not, write to the Free Software
22 > * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 > *
24 > */
25  
26 < #include <iostream>
27 < using namespace std;
26 > /**
27 > * @file SimInfo.cpp
28 > * @author    tlin
29 > * @date  11/02/2004
30 > * @version 1.0
31 > */
32  
33 + #include <algorithm>
34 +
35   #include "brains/SimInfo.hpp"
36 < #define __C
10 < #include "brains/fSimulation.h"
11 < #include "utils/simError.h"
12 < #include "UseTheForce/DarkSide/simulation_interface.h"
13 < #include "UseTheForce/notifyCutoffs_interface.h"
36 > #include "utils/MemoryUtils.hpp"
37  
38 < //#include "UseTheForce/fortranWrappers.hpp"
38 > namespace oopse {
39  
40 < #include "math/MatVec3.h"
40 > SimInfo::SimInfo() : nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
41 >        nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), sman_(NULL){
42  
19 #ifdef IS_MPI
20 #include "brains/mpiSimulation.hpp"
21 #endif
22
23 inline double roundMe( double x ){
24  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
43   }
26          
27 inline double min( double a, double b ){
28  return (a < b ) ? a : b;
29 }
44  
45 < SimInfo* currentInfo;
45 > SimInfo::~SimInfo() {
46 >    MemoryUtils::deleteVectorOfPointer(molecules_);
47 >    delete sman_;
48  
33 SimInfo::SimInfo(){
34
35  n_constraints = 0;
36  nZconstraints = 0;
37  n_oriented = 0;
38  n_dipoles = 0;
39  ndf = 0;
40  ndfRaw = 0;
41  nZconstraints = 0;
42  the_integrator = NULL;
43  setTemp = 0;
44  thermalTime = 0.0;
45  currentTime = 0.0;
46  rCut = 0.0;
47  rSw = 0.0;
48
49  haveRcut = 0;
50  haveRsw = 0;
51  boxIsInit = 0;
52  
53  resetTime = 1e99;
54
55  orthoRhombic = 0;
56  orthoTolerance = 1E-6;
57  useInitXSstate = true;
58
59  usePBC = 0;
60  useLJ = 0;
61  useSticky = 0;
62  useCharges = 0;
63  useDipoles = 0;
64  useReactionField = 0;
65  useGB = 0;
66  useEAM = 0;
67  useSolidThermInt = 0;
68  useLiquidThermInt = 0;
69
70  haveCutoffGroups = false;
71
72  excludes = Exclude::Instance();
73
74  myConfiguration = new SimState();
75
76  has_minimizer = false;
77  the_minimizer =NULL;
78
79  ngroup = 0;
80
49   }
50  
51  
52 < SimInfo::~SimInfo(){
52 > bool SimInfo::addMolecule(Molecule* mol) {
53 >    std::vector<Molecule*>::iterator i;
54 >    i = std::find(molecules_.begin(), molecules_.end(), mol);
55 >    if (i != molecules_.end() ) {
56 >        molecules_.push_back(mol);
57  
58 <  delete myConfiguration;
58 >        nAtoms_ += mol->getNAtoms();
59 >        nBonds_ += mol->getNBonds();
60 >        nBends_ += mol->getNBends();
61 >        nTorsions_ += mol->getNTorsions();
62 >        nRigidBodies_ += mol->getNRigidBodies();
63 >        nIntegrableObjects_ += mol->getNIntegrableObjects();
64 >        nCutoffGroups_ += mol->getNCutoffGroups();
65 >        nConstraints_ += mol->getNConstraints();
66  
67 <  map<string, GenericData*>::iterator i;
68 <  
69 <  for(i = properties.begin(); i != properties.end(); i++)
70 <    delete (*i).second;
71 <
67 >        globalIndexToMol_.insert(make_pair(mol->getGlobalIndex(), mol));
68 >        return true;
69 >    } else {
70 >        return false;
71 >    }
72   }
73  
74 < void SimInfo::setBox(double newBox[3]) {
75 <  
76 <  int i, j;
98 <  double tempMat[3][3];
74 > bool SimInfo::removeMolecule(Molecule* mol) {
75 >    std::vector<Molecule*>::iterator i;
76 >    i = std::find(molecules_.begin(), molecules_.end(), mol);
77  
78 <  for(i=0; i<3; i++)
79 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
78 >    if (i != molecules_.end() ) {
79 >        molecules_.push_back(mol);
80 >        nAtoms_ -= mol->getNAtoms();
81 >        nBonds_ -= mol->getNBonds();
82 >        nBends_ -= mol->getNBends();
83 >        nTorsions_ -= mol->getNTorsions();
84 >        nRigidBodies_ -= mol->getNRigidBodies();
85 >        nIntegrableObjects_ -= mol->getNIntegrableObjects();
86 >        nCutoffGroups_ -= mol->getNCutoffGroups();
87 >        nConstraints_ -= mol->getNConstraints();
88  
89 <  tempMat[0][0] = newBox[0];
90 <  tempMat[1][1] = newBox[1];
91 <  tempMat[2][2] = newBox[2];
92 <
107 <  setBoxM( tempMat );
108 <
109 < }
110 <
111 < void SimInfo::setBoxM( double theBox[3][3] ){
112 <  
113 <  int i, j;
114 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
115 <                         // ordering in the array is as follows:
116 <                         // [ 0 3 6 ]
117 <                         // [ 1 4 7 ]
118 <                         // [ 2 5 8 ]
119 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
120 <
121 <  if( !boxIsInit ) boxIsInit = 1;
122 <
123 <  for(i=0; i < 3; i++)
124 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
125 <  
126 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
89 >        globalIndexToMol_.erase(mol->getGlobalIndex());
90 >        return true;
91 >    } else {
92 >        return false;
93      }
134  }
94  
136  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
137
138 }
139
95  
96 < void SimInfo::getBoxM (double theBox[3][3]) {
96 > }    
97  
98 <  int i, j;
99 <  for(i=0; i<3; i++)
100 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
101 < }
98 >        
99 > Molecule* SimInfo::beginMolecule(std::vector<Molecule*>::iterator& i) {
100 >    i = molecules_.begin();
101 >    return i == molecules_.end() ? NULL : *i;
102 > }    
103  
104 <
105 < void SimInfo::scaleBox(double scale) {
106 <  double theBox[3][3];
151 <  int i, j;
152 <
153 <  // cerr << "Scaling box by " << scale << "\n";
154 <
155 <  for(i=0; i<3; i++)
156 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
157 <
158 <  setBoxM(theBox);
159 <
104 > Molecule* SimInfo::nextMolecule(std::vector<Molecule*>::iterator& i) {
105 >    ++i;
106 >    return i == molecules_.end() ? NULL : *i;    
107   }
108  
162 void SimInfo::calcHmatInv( void ) {
163  
164  int oldOrtho;
165  int i,j;
166  double smallDiag;
167  double tol;
168  double sanity[3][3];
109  
110 <  invertMat3( Hmat, HmatInv );
110 > void SimInfo::calcNdf() {
111 >    int ndf_local;
112 >    std::vector<Molecule*>::iterator i;
113 >    std::vector<StuntDouble*>::iterator j;
114 >    Molecule* mol;
115 >    StuntDouble* integrableObject;
116  
117 <  // check to see if Hmat is orthorhombic
173 <  
174 <  oldOrtho = orthoRhombic;
175 <
176 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
180 <
181 <  orthoRhombic = 1;
182 <  
183 <  for (i = 0; i < 3; i++ ) {
184 <    for (j = 0 ; j < 3; j++) {
185 <      if (i != j) {
186 <        if (orthoRhombic) {
187 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
188 <        }        
189 <      }
190 <    }
191 <  }
192 <
193 <  if( oldOrtho != orthoRhombic ){
117 >    ndf_local = 0;
118      
119 <    if( orthoRhombic ) {
120 <      sprintf( painCave.errMsg,
121 <               "OOPSE is switching from the default Non-Orthorhombic\n"
198 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
199 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
219 < }
119 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
120 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
121 >               integrableObject = mol->nextIntegrableObject(j)) {
122  
123 < void SimInfo::calcBoxL( void ){
123 >            ndf_local += 3;
124  
125 <  double dx, dy, dz, dsq;
126 <
127 <  // boxVol = Determinant of Hmat
128 <
129 <  boxVol = matDet3( Hmat );
130 <
131 <  // boxLx
132 <  
133 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
134 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
235 <
236 <  // boxLy
237 <  
238 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
239 <  dsq = dx*dx + dy*dy + dz*dz;
240 <  boxL[1] = sqrt( dsq );
241 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
242 <
243 <
244 <  // boxLz
245 <  
246 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
247 <  dsq = dx*dx + dy*dy + dz*dz;
248 <  boxL[2] = sqrt( dsq );
249 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
250 <
251 <  //calculate the max cutoff
252 <  maxCutoff =  calcMaxCutOff();
253 <  
254 <  checkCutOffs();
255 <
256 < }
257 <
258 <
259 < double SimInfo::calcMaxCutOff(){
260 <
261 <  double ri[3], rj[3], rk[3];
262 <  double rij[3], rjk[3], rki[3];
263 <  double minDist;
264 <
265 <  ri[0] = Hmat[0][0];
266 <  ri[1] = Hmat[1][0];
267 <  ri[2] = Hmat[2][0];
268 <
269 <  rj[0] = Hmat[0][1];
270 <  rj[1] = Hmat[1][1];
271 <  rj[2] = Hmat[2][1];
272 <
273 <  rk[0] = Hmat[0][2];
274 <  rk[1] = Hmat[1][2];
275 <  rk[2] = Hmat[2][2];
125 >            if (integrableObject->isDirectional()) {
126 >                if (integrableObject->isLinear()) {
127 >                    ndf_local += 2;
128 >                } else {
129 >                    ndf_local += 3;
130 >                }
131 >            }
132 >            
133 >        }//end for (integrableObject)
134 >    }// end for (mol)
135      
136 <  crossProduct3(ri, rj, rij);
137 <  distXY = dotProduct3(rk,rij) / norm3(rij);
136 >    // n_constraints is local, so subtract them on each processor
137 >    ndf_local -= nConstraints_;
138  
139 <  crossProduct3(rj,rk, rjk);
140 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
139 > #ifdef IS_MPI
140 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
141 > #else
142 >    ndf_ = ndf_local;
143 > #endif
144  
145 <  crossProduct3(rk,ri, rki);
146 <  distZX = dotProduct3(rj,rki) / norm3(rki);
145 >    // nZconstraints is global, as are the 3 COM translations for the
146 >    // entire system:
147 >    ndf_ = ndf_ - 3 - nZconstraints;
148  
286  minDist = min(min(distXY, distYZ), distZX);
287  return minDist/2;
288  
149   }
150  
151 < void SimInfo::wrapVector( double thePos[3] ){
151 > void SimInfo::calcNdfRaw() {
152 >    int ndfRaw_local;
153  
154 <  int i;
155 <  double scaled[3];
154 >    std::vector<Molecule*>::iterator i;
155 >    std::vector<StuntDouble*>::iterator j;
156 >    Molecule* mol;
157 >    StuntDouble* integrableObject;
158  
159 <  if( !orthoRhombic ){
160 <    // calc the scaled coordinates.
298 <  
299 <
300 <    matVecMul3(HmatInv, thePos, scaled);
159 >    // Raw degrees of freedom that we have to set
160 >    ndfRaw_local = 0;
161      
162 <    for(i=0; i<3; i++)
163 <      scaled[i] -= roundMe(scaled[i]);
164 <    
305 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
306 <    
307 <    matVecMul3(Hmat, scaled, thePos);
162 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
163 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
164 >               integrableObject = mol->nextIntegrableObject(j)) {
165  
166 <  }
310 <  else{
311 <    // calc the scaled coordinates.
312 <    
313 <    for(i=0; i<3; i++)
314 <      scaled[i] = thePos[i]*HmatInv[i][i];
315 <    
316 <    // wrap the scaled coordinates
317 <    
318 <    for(i=0; i<3; i++)
319 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
327 < }
166 >            ndfRaw_local += 3;
167  
168 <
169 < int SimInfo::getNDF(){
170 <  int ndf_local;
171 <
172 <  ndf_local = 0;
173 <  
174 <  for(int i = 0; i < integrableObjects.size(); i++){
175 <    ndf_local += 3;
176 <    if (integrableObjects[i]->isDirectional()) {
338 <      if (integrableObjects[i]->isLinear())
339 <        ndf_local += 2;
340 <      else
341 <        ndf_local += 3;
168 >            if (integrableObject->isDirectional()) {
169 >                if (integrableObject->isLinear()) {
170 >                    ndfRaw_local += 2;
171 >                } else {
172 >                    ndfRaw_local += 3;
173 >                }
174 >            }
175 >            
176 >        }
177      }
343  }
344
345  // n_constraints is local, so subtract them on each processor:
346
347  ndf_local -= n_constraints;
348
349 #ifdef IS_MPI
350  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
351 #else
352  ndf = ndf_local;
353 #endif
354
355  // nZconstraints is global, as are the 3 COM translations for the
356  // entire system:
357
358  ndf = ndf - 3 - nZconstraints;
359
360  return ndf;
361 }
362
363 int SimInfo::getNDFraw() {
364  int ndfRaw_local;
365
366  // Raw degrees of freedom that we have to set
367  ndfRaw_local = 0;
368
369  for(int i = 0; i < integrableObjects.size(); i++){
370    ndfRaw_local += 3;
371    if (integrableObjects[i]->isDirectional()) {
372       if (integrableObjects[i]->isLinear())
373        ndfRaw_local += 2;
374      else
375        ndfRaw_local += 3;
376    }
377  }
178      
179   #ifdef IS_MPI
180 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
180 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
181   #else
182 <  ndfRaw = ndfRaw_local;
182 >    ndfRaw_ = ndfRaw_local;
183   #endif
384
385  return ndfRaw;
184   }
185  
186 < int SimInfo::getNDFtranslational() {
187 <  int ndfTrans_local;
186 > void SimInfo::calcNdfTrans() {
187 >    int ndfTrans_local;
188  
189 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
189 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
190  
191  
192   #ifdef IS_MPI
193 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
193 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
194   #else
195 <  ndfTrans = ndfTrans_local;
195 >    ndfTrans_ = ndfTrans_local;
196   #endif
197  
198 <  ndfTrans = ndfTrans - 3 - nZconstraints;
199 <
402 <  return ndfTrans;
198 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraints;
199 >
200   }
201  
202 < int SimInfo::getTotIntegrableObjects() {
203 <  int nObjs_local;
204 <  int nObjs;
202 > void SimInfo::addExcludePairs(Molecule* mol) {
203 >    std::vector<Bond*>::iterator bondIter;
204 >    std::vector<Bend*>::iterator bendIter;
205 >    std::vector<Torsion*>::iterator torsionIter;
206 >    Bond* bond;
207 >    Bend* bend;
208 >    Torsion* torsion;
209 >    int a;
210 >    int b;
211 >    int c;
212 >    int d;
213 >    
214 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
215 >        a = bond->getAtomA()->getGlobalIndex();
216 >        b = bond->getAtomB()->getGlobalIndex();        
217 >        exclude_.addPair(a, b);
218 >    }
219  
220 <  nObjs_local =  integrableObjects.size();
220 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
221 >        a = bend->getAtomA()->getGlobalIndex();
222 >        b = bend->getAtomB()->getGlobalIndex();        
223 >        c = bend->getAtomC()->getGlobalIndex();
224  
225 +        exclude_.addPair(a, b);
226 +        exclude_.addPair(a, c);
227 +        exclude_.addPair(b, c);        
228 +    }
229  
230 < #ifdef IS_MPI
231 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
232 < #else
233 <  nObjs = nObjs_local;
234 < #endif
230 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextBond(torsionIter)) {
231 >        a = torsion->getAtomA()->getGlobalIndex();
232 >        b = torsion->getAtomB()->getGlobalIndex();        
233 >        c = torsion->getAtomC()->getGlobalIndex();        
234 >        d = torsion->getAtomD()->getGlobalIndex();        
235  
236 +        exclude_.addPair(a, b);
237 +        exclude_.addPair(a, c);
238 +        exclude_.addPair(a, d);
239 +        exclude_.addPair(b, c);
240 +        exclude_.addPair(b, d);
241 +        exclude_.addPair(c, d);        
242 +    }
243  
244 <  return nObjs;
244 >    
245   }
246  
247 < void SimInfo::refreshSim(){
248 <
249 <  simtype fInfo;
250 <  int isError;
251 <  int n_global;
252 <  int* excl;
253 <
254 <  fInfo.dielect = 0.0;
255 <
256 <  if( useDipoles ){
257 <    if( useReactionField )fInfo.dielect = dielectric;
433 <  }
434 <
435 <  fInfo.SIM_uses_PBC = usePBC;
436 <  //fInfo.SIM_uses_LJ = 0;
437 <  fInfo.SIM_uses_LJ = useLJ;
438 <  fInfo.SIM_uses_sticky = useSticky;
439 <  //fInfo.SIM_uses_sticky = 0;
440 <  fInfo.SIM_uses_charges = useCharges;
441 <  fInfo.SIM_uses_dipoles = useDipoles;
442 <  //fInfo.SIM_uses_dipoles = 0;
443 <  fInfo.SIM_uses_RF = useReactionField;
444 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
447 <
448 <  n_exclude = excludes->getSize();
449 <  excl = excludes->getFortranArray();
450 <  
451 < #ifdef IS_MPI
452 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
455 < #endif
456 <  
457 <  isError = 0;
458 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
466 <
467 <  if( isError ){
247 > void SimInfo::removeExcludePairs(Molecule* mol) {
248 >    std::vector<Bond*>::iterator bondIter;
249 >    std::vector<Bend*>::iterator bendIter;
250 >    std::vector<Torsion*>::iterator torsionIter;
251 >    Bond* bond;
252 >    Bend* bend;
253 >    Torsion* torsion;
254 >    int a;
255 >    int b;
256 >    int c;
257 >    int d;
258      
259 <    sprintf( painCave.errMsg,
260 <             "There was an error setting the simulation information in fortran.\n" );
261 <    painCave.isFatal = 1;
262 <    painCave.severity = OOPSE_ERROR;
263 <    simError();
474 <  }
475 <  
476 < #ifdef IS_MPI
477 <  sprintf( checkPointMsg,
478 <           "succesfully sent the simulation information to fortran.\n");
479 <  MPIcheckPoint();
480 < #endif // is_mpi
481 <  
482 <  this->ndf = this->getNDF();
483 <  this->ndfRaw = this->getNDFraw();
484 <  this->ndfTrans = this->getNDFtranslational();
485 < }
259 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
260 >        a = bond->getAtomA()->getGlobalIndex();
261 >        b = bond->getAtomB()->getGlobalIndex();        
262 >        exclude_.removePair(a, b);
263 >    }
264  
265 < void SimInfo::setDefaultRcut( double theRcut ){
266 <  
267 <  haveRcut = 1;
268 <  rCut = theRcut;
491 <  rList = rCut + 1.0;
492 <  
493 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 < }
265 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
266 >        a = bend->getAtomA()->getGlobalIndex();
267 >        b = bend->getAtomB()->getGlobalIndex();        
268 >        c = bend->getAtomC()->getGlobalIndex();
269  
270 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
270 >        exclude_.removePair(a, b);
271 >        exclude_.removePair(a, c);
272 >        exclude_.removePair(b, c);        
273 >    }
274  
275 <  rSw = theRsw;
276 <  setDefaultRcut( theRcut );
277 < }
275 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextBond(torsionIter)) {
276 >        a = torsion->getAtomA()->getGlobalIndex();
277 >        b = torsion->getAtomB()->getGlobalIndex();        
278 >        c = torsion->getAtomC()->getGlobalIndex();        
279 >        d = torsion->getAtomD()->getGlobalIndex();        
280  
281 +        exclude_.removePair(a, b);
282 +        exclude_.removePair(a, c);
283 +        exclude_.removePair(a, d);
284 +        exclude_.removePair(b, c);
285 +        exclude_.removePair(b, d);
286 +        exclude_.removePair(c, d);        
287 +    }
288  
503 void SimInfo::checkCutOffs( void ){
504  
505  if( boxIsInit ){
506    
507    //we need to check cutOffs against the box
508    
509    if( rCut > maxCutoff ){
510      sprintf( painCave.errMsg,
511               "cutoffRadius is too large for the current periodic box.\n"
512               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513               "\tThis is larger than half of at least one of the\n"
514               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515               "\n"
516               "\t[ %G %G %G ]\n"
517               "\t[ %G %G %G ]\n"
518               "\t[ %G %G %G ]\n",
519               rCut, currentTime,
520               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523      painCave.severity = OOPSE_ERROR;
524      painCave.isFatal = 1;
525      simError();
526    }    
527  } else {
528    // initialize this stuff before using it, OK?
529    sprintf( painCave.errMsg,
530             "Trying to check cutoffs without a box.\n"
531             "\tOOPSE should have better programmers than that.\n" );
532    painCave.severity = OOPSE_ERROR;
533    painCave.isFatal = 1;
534    simError();      
535  }
536  
289   }
290  
539 void SimInfo::addProperty(GenericData* prop){
291  
292 <  map<string, GenericData*>::iterator result;
293 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
548 <    
549 <    delete (*result).second;
550 <    (*result).second = prop;
551 <      
552 <  }
553 <  else{
292 > void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
293 >    int curStampId;
294  
295 <    properties[prop->getID()] = prop;
295 >    //index from 0
296 >    curStampId = molStampIds_.size();
297  
298 <  }
299 <    
298 >    moleculeStamps_.push_back(molStamp);
299 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId)
300   }
301  
302 < GenericData* SimInfo::getProperty(const string& propName){
562 <
563 <  map<string, GenericData*>::iterator result;
564 <  
565 <  //string lowerCaseName = ();
566 <  
567 <  result = properties.find(propName);
568 <  
569 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
302 > std::ostream& operator <<(ostream& o, SimInfo& info) {
303  
304 <
576 < void SimInfo::getFortranGroupArrays(SimInfo* info,
577 <                                    vector<int>& FglobalGroupMembership,
578 <                                    vector<double>& mfact){
579 <  
580 <  Molecule* myMols;
581 <  Atom** myAtoms;
582 <  int numAtom;
583 <  double mtot;
584 <  int numMol;
585 <  int numCutoffGroups;
586 <  CutoffGroup* myCutoffGroup;
587 <  vector<CutoffGroup*>::iterator iterCutoff;
588 <  Atom* cutoffAtom;
589 <  vector<Atom*>::iterator iterAtom;
590 <  int atomIndex;
591 <  double totalMass;
592 <  
593 <  mfact.clear();
594 <  FglobalGroupMembership.clear();
595 <  
596 <
597 <  // Fix the silly fortran indexing problem
598 < #ifdef IS_MPI
599 <  numAtom = mpiSim->getNAtomsGlobal();
600 < #else
601 <  numAtom = n_atoms;
602 < #endif
603 <  for (int i = 0; i < numAtom; i++)
604 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605 <  
606 <
607 <  myMols = info->molecules;
608 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
614 <
615 <      totalMass = myCutoffGroup->getMass();
616 <      
617 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
618 <          cutoffAtom != NULL;
619 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
620 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
621 <      }  
622 <    }
623 <  }
624 <
304 >    return o;
305   }
306 +
307 + }//end namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines