ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/OOPSE-3.0/src/brains/SimInfo.cpp (file contents), Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/new_design/OOPSE-3.0/src/brains/SimInfo.cpp (file contents), Revision 1856 by tim, Mon Dec 6 04:49:53 2004 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 > *
4 > * Contact: oopse@oopse.org
5 > *
6 > * This program is free software; you can redistribute it and/or
7 > * modify it under the terms of the GNU Lesser General Public License
8 > * as published by the Free Software Foundation; either version 2.1
9 > * of the License, or (at your option) any later version.
10 > * All we ask is that proper credit is given for our work, which includes
11 > * - but is not limited to - adding the above copyright notice to the beginning
12 > * of your source code files, and to any copyright notice that you may distribute
13 > * with programs based on this work.
14 > *
15 > * This program is distributed in the hope that it will be useful,
16 > * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 > * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 > * GNU Lesser General Public License for more details.
19 > *
20 > * You should have received a copy of the GNU Lesser General Public License
21 > * along with this program; if not, write to the Free Software
22 > * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 > *
24 > */
25  
26 < #include <iostream>
27 < using namespace std;
26 > /**
27 > * @file SimInfo.cpp
28 > * @author    tlin
29 > * @date  11/02/2004
30 > * @version 1.0
31 > */
32  
33 + #include <algorithm>
34 + #include <set>
35   #include "brains/SimInfo.hpp"
36 < #define __C
37 < #include "brains/fSimulation.h"
11 < #include "utils/simError.h"
12 < #include "UseTheForce/DarkSide/simulation_interface.h"
36 > #include "primitives/Molecule.hpp"
37 > #include "UseTheForce/doForces_interface.h"
38   #include "UseTheForce/notifyCutoffs_interface.h"
39 + #include "utils/MemoryUtils.hpp"
40 + #include "utils/simError.h"
41  
42 < //#include "UseTheForce/fortranWrappers.hpp"
42 > namespace oopse {
43  
44 < #include "math/MatVec3.h"
44 > SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
45 >                                ForceField* ff, Globals* simParams) :
46 >                                forceField_(ff), simParams_(simParams),
47 >                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
48 >                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
49 >                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
50 >                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
51 >                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
52 >                                sman_(NULL), fortranInitialized_(false) {
53  
54 < #ifdef IS_MPI
55 < #include "brains/mpiSimulation.hpp"
56 < #endif
54 >            
55 >    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
56 >    MoleculeStamp* molStamp;
57 >    int nMolWithSameStamp;
58 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
59 >    int nGroups = 0;          //total cutoff groups defined in meta-data file
60 >    CutoffGroupStamp* cgStamp;    
61 >    RigidBodyStamp* rbStamp;
62 >    int nRigidAtoms = 0;
63 >    
64 >    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
65 >        molStamp = i->first;
66 >        nMolWithSameStamp = i->second;
67 >        
68 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
69  
70 < inline double roundMe( double x ){
71 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 < }
26 <          
27 < inline double min( double a, double b ){
28 <  return (a < b ) ? a : b;
29 < }
70 >        //calculate atoms in molecules
71 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
72  
31 SimInfo* currentInfo;
73  
74 < SimInfo::SimInfo(){
74 >        //calculate atoms in cutoff groups
75 >        int nAtomsInGroups = 0;
76 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
77 >        
78 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
79 >            cgStamp = molStamp->getCutoffGroup(j);
80 >            nAtomsInGroups += cgStamp->getNMembers();
81 >        }
82  
83 <  n_constraints = 0;
84 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
83 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
84 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
85  
86 <  haveRcut = 0;
87 <  haveRsw = 0;
88 <  boxIsInit = 0;
89 <  
90 <  resetTime = 1e99;
86 >        //calculate atoms in rigid bodies
87 >        int nAtomsInRigidBodies = 0;
88 >        int nRigidBodiesInStamp = molStamp->getNCutoffGroups();
89 >        
90 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
91 >            rbStamp = molStamp->getRigidBody(j);
92 >            nAtomsInRigidBodies += rbStamp->getNMembers();
93 >        }
94  
95 <  orthoRhombic = 0;
96 <  orthoTolerance = 1E-6;
97 <  useInitXSstate = true;
95 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
96 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
97 >        
98 >    }
99  
100 <  usePBC = 0;
101 <  useLJ = 0;
102 <  useSticky = 0;
103 <  useCharges = 0;
104 <  useDipoles = 0;
64 <  useReactionField = 0;
65 <  useGB = 0;
66 <  useEAM = 0;
67 <  useSolidThermInt = 0;
68 <  useLiquidThermInt = 0;
100 >    //every free atom (atom does not belong to cutoff groups) is a cutoff group
101 >    //therefore the total number of cutoff groups in the system is equal to
102 >    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
103 >    //file plus the number of cutoff groups defined in meta-data file
104 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
105  
106 <  haveCutoffGroups = false;
106 >    //every free atom (atom does not belong to rigid bodies) is an integrable object
107 >    //therefore the total number of  integrable objects in the system is equal to
108 >    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
109 >    //file plus the number of  rigid bodies defined in meta-data file
110 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
111  
112 <  excludes = Exclude::Instance();
112 >    nGlobalMols_ = molStampIds_.size();
113  
114 <  myConfiguration = new SimState();
114 > #ifdef IS_MPI    
115 >    molToProcMap_.resize(nGlobalMols_);
116 > #endif
117 >    
118 > }
119  
120 <  has_minimizer = false;
121 <  the_minimizer =NULL;
120 > SimInfo::~SimInfo() {
121 >    //MemoryUtils::deleteVectorOfPointer(molecules_);
122  
123 <  ngroup = 0;
123 >    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
124 >    
125 >    delete sman_;
126 >    delete simParams_;
127 >    delete forceField_;
128  
129   }
130  
131  
132 < SimInfo::~SimInfo(){
132 > bool SimInfo::addMolecule(Molecule* mol) {
133 >    MoleculeIterator i;
134  
135 <  delete myConfiguration;
135 >    i = molecules_.find(mol->getGlobalIndex());
136 >    if (i == molecules_.end() ) {
137  
138 <  map<string, GenericData*>::iterator i;
139 <  
140 <  for(i = properties.begin(); i != properties.end(); i++)
141 <    delete (*i).second;
138 >        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
139 >        
140 >        nAtoms_ += mol->getNAtoms();
141 >        nBonds_ += mol->getNBonds();
142 >        nBends_ += mol->getNBends();
143 >        nTorsions_ += mol->getNTorsions();
144 >        nRigidBodies_ += mol->getNRigidBodies();
145 >        nIntegrableObjects_ += mol->getNIntegrableObjects();
146 >        nCutoffGroups_ += mol->getNCutoffGroups();
147 >        nConstraints_ += mol->getNConstraints();
148  
149 +        addExcludePairs(mol);
150 +        
151 +        return true;
152 +    } else {
153 +        return false;
154 +    }
155   }
156  
157 < void SimInfo::setBox(double newBox[3]) {
158 <  
159 <  int i, j;
98 <  double tempMat[3][3];
157 > bool SimInfo::removeMolecule(Molecule* mol) {
158 >    MoleculeIterator i;
159 >    i = molecules_.find(mol->getGlobalIndex());
160  
161 <  for(i=0; i<3; i++)
101 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
161 >    if (i != molecules_.end() ) {
162  
163 <  tempMat[0][0] = newBox[0];
164 <  tempMat[1][1] = newBox[1];
165 <  tempMat[2][2] = newBox[2];
163 >        assert(mol == i->second);
164 >        
165 >        nAtoms_ -= mol->getNAtoms();
166 >        nBonds_ -= mol->getNBonds();
167 >        nBends_ -= mol->getNBends();
168 >        nTorsions_ -= mol->getNTorsions();
169 >        nRigidBodies_ -= mol->getNRigidBodies();
170 >        nIntegrableObjects_ -= mol->getNIntegrableObjects();
171 >        nCutoffGroups_ -= mol->getNCutoffGroups();
172 >        nConstraints_ -= mol->getNConstraints();
173  
174 <  setBoxM( tempMat );
174 >        removeExcludePairs(mol);
175 >        molecules_.erase(mol->getGlobalIndex());
176  
177 < }
177 >        delete mol;
178 >        
179 >        return true;
180 >    } else {
181 >        return false;
182 >    }
183  
111 void SimInfo::setBoxM( double theBox[3][3] ){
112  
113  int i, j;
114  double FortranHmat[9]; // to preserve compatibility with Fortran the
115                         // ordering in the array is as follows:
116                         // [ 0 3 6 ]
117                         // [ 1 4 7 ]
118                         // [ 2 5 8 ]
119  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
184  
185 <  if( !boxIsInit ) boxIsInit = 1;
185 > }    
186  
187 <  for(i=0; i < 3; i++)
188 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
189 <  
190 <  calcBoxL();
191 <  calcHmatInv();
187 >        
188 > Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
189 >    i = molecules_.begin();
190 >    return i == molecules_.end() ? NULL : i->second;
191 > }    
192  
193 <  for(i=0; i < 3; i++) {
194 <    for (j=0; j < 3; j++) {
195 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
133 <    }
134 <  }
135 <
136 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
137 <
193 > Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
194 >    ++i;
195 >    return i == molecules_.end() ? NULL : i->second;    
196   }
139
197  
141 void SimInfo::getBoxM (double theBox[3][3]) {
198  
199 <  int i, j;
200 <  for(i=0; i<3; i++)
201 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
202 < }
199 > void SimInfo::calcNdf() {
200 >    int ndf_local;
201 >    MoleculeIterator i;
202 >    std::vector<StuntDouble*>::iterator j;
203 >    Molecule* mol;
204 >    StuntDouble* integrableObject;
205  
206 +    ndf_local = 0;
207 +    
208 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
209 +        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
210 +               integrableObject = mol->nextIntegrableObject(j)) {
211  
212 < void SimInfo::scaleBox(double scale) {
150 <  double theBox[3][3];
151 <  int i, j;
212 >            ndf_local += 3;
213  
214 <  // cerr << "Scaling box by " << scale << "\n";
214 >            if (integrableObject->isDirectional()) {
215 >                if (integrableObject->isLinear()) {
216 >                    ndf_local += 2;
217 >                } else {
218 >                    ndf_local += 3;
219 >                }
220 >            }
221 >            
222 >        }//end for (integrableObject)
223 >    }// end for (mol)
224 >    
225 >    // n_constraints is local, so subtract them on each processor
226 >    ndf_local -= nConstraints_;
227  
228 <  for(i=0; i<3; i++)
229 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
228 > #ifdef IS_MPI
229 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
230 > #else
231 >    ndf_ = ndf_local;
232 > #endif
233  
234 <  setBoxM(theBox);
234 >    // nZconstraints_ is global, as are the 3 COM translations for the
235 >    // entire system:
236 >    ndf_ = ndf_ - 3 - nZconstraint_;
237  
238   }
239  
240 < void SimInfo::calcHmatInv( void ) {
241 <  
164 <  int oldOrtho;
165 <  int i,j;
166 <  double smallDiag;
167 <  double tol;
168 <  double sanity[3][3];
240 > void SimInfo::calcNdfRaw() {
241 >    int ndfRaw_local;
242  
243 <  invertMat3( Hmat, HmatInv );
243 >    MoleculeIterator i;
244 >    std::vector<StuntDouble*>::iterator j;
245 >    Molecule* mol;
246 >    StuntDouble* integrableObject;
247  
248 <  // check to see if Hmat is orthorhombic
249 <  
250 <  oldOrtho = orthoRhombic;
248 >    // Raw degrees of freedom that we have to set
249 >    ndfRaw_local = 0;
250 >    
251 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
252 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253 >               integrableObject = mol->nextIntegrableObject(j)) {
254  
255 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
255 >            ndfRaw_local += 3;
256  
257 <  orthoRhombic = 1;
258 <  
259 <  for (i = 0; i < 3; i++ ) {
260 <    for (j = 0 ; j < 3; j++) {
261 <      if (i != j) {
262 <        if (orthoRhombic) {
263 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
264 <        }        
265 <      }
257 >            if (integrableObject->isDirectional()) {
258 >                if (integrableObject->isLinear()) {
259 >                    ndfRaw_local += 2;
260 >                } else {
261 >                    ndfRaw_local += 3;
262 >                }
263 >            }
264 >            
265 >        }
266      }
191  }
192
193  if( oldOrtho != orthoRhombic ){
267      
268 <    if( orthoRhombic ) {
269 <      sprintf( painCave.errMsg,
270 <               "OOPSE is switching from the default Non-Orthorhombic\n"
271 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
272 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
268 > #ifdef IS_MPI
269 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270 > #else
271 >    ndfRaw_ = ndfRaw_local;
272 > #endif
273   }
274  
275 < void SimInfo::calcBoxL( void ){
275 > void SimInfo::calcNdfTrans() {
276 >    int ndfTrans_local;
277  
278 <  double dx, dy, dz, dsq;
278 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
279  
225  // boxVol = Determinant of Hmat
280  
281 <  boxVol = matDet3( Hmat );
281 > #ifdef IS_MPI
282 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283 > #else
284 >    ndfTrans_ = ndfTrans_local;
285 > #endif
286  
287 <  // boxLx
288 <  
289 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
232 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
287 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
288 >
289 > }
290  
291 <  // boxLy
292 <  
293 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
294 <  dsq = dx*dx + dy*dy + dz*dz;
295 <  boxL[1] = sqrt( dsq );
296 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
291 > void SimInfo::addExcludePairs(Molecule* mol) {
292 >    std::vector<Bond*>::iterator bondIter;
293 >    std::vector<Bend*>::iterator bendIter;
294 >    std::vector<Torsion*>::iterator torsionIter;
295 >    Bond* bond;
296 >    Bend* bend;
297 >    Torsion* torsion;
298 >    int a;
299 >    int b;
300 >    int c;
301 >    int d;
302 >    
303 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
304 >        a = bond->getAtomA()->getGlobalIndex();
305 >        b = bond->getAtomB()->getGlobalIndex();        
306 >        exclude_.addPair(a, b);
307 >    }
308  
309 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
310 +        a = bend->getAtomA()->getGlobalIndex();
311 +        b = bend->getAtomB()->getGlobalIndex();        
312 +        c = bend->getAtomC()->getGlobalIndex();
313  
314 <  // boxLz
315 <  
316 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
317 <  dsq = dx*dx + dy*dy + dz*dz;
248 <  boxL[2] = sqrt( dsq );
249 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
314 >        exclude_.addPair(a, b);
315 >        exclude_.addPair(a, c);
316 >        exclude_.addPair(b, c);        
317 >    }
318  
319 <  //calculate the max cutoff
320 <  maxCutoff =  calcMaxCutOff();
321 <  
322 <  checkCutOffs();
319 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
320 >        a = torsion->getAtomA()->getGlobalIndex();
321 >        b = torsion->getAtomB()->getGlobalIndex();        
322 >        c = torsion->getAtomC()->getGlobalIndex();        
323 >        d = torsion->getAtomD()->getGlobalIndex();        
324  
325 +        exclude_.addPair(a, b);
326 +        exclude_.addPair(a, c);
327 +        exclude_.addPair(a, d);
328 +        exclude_.addPair(b, c);
329 +        exclude_.addPair(b, d);
330 +        exclude_.addPair(c, d);        
331 +    }
332 +
333 +    
334   }
335  
336 + void SimInfo::removeExcludePairs(Molecule* mol) {
337 +    std::vector<Bond*>::iterator bondIter;
338 +    std::vector<Bend*>::iterator bendIter;
339 +    std::vector<Torsion*>::iterator torsionIter;
340 +    Bond* bond;
341 +    Bend* bend;
342 +    Torsion* torsion;
343 +    int a;
344 +    int b;
345 +    int c;
346 +    int d;
347 +    
348 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
349 +        a = bond->getAtomA()->getGlobalIndex();
350 +        b = bond->getAtomB()->getGlobalIndex();        
351 +        exclude_.removePair(a, b);
352 +    }
353  
354 < double SimInfo::calcMaxCutOff(){
354 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
355 >        a = bend->getAtomA()->getGlobalIndex();
356 >        b = bend->getAtomB()->getGlobalIndex();        
357 >        c = bend->getAtomC()->getGlobalIndex();
358  
359 <  double ri[3], rj[3], rk[3];
360 <  double rij[3], rjk[3], rki[3];
361 <  double minDist;
359 >        exclude_.removePair(a, b);
360 >        exclude_.removePair(a, c);
361 >        exclude_.removePair(b, c);        
362 >    }
363  
364 <  ri[0] = Hmat[0][0];
365 <  ri[1] = Hmat[1][0];
366 <  ri[2] = Hmat[2][0];
364 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
365 >        a = torsion->getAtomA()->getGlobalIndex();
366 >        b = torsion->getAtomB()->getGlobalIndex();        
367 >        c = torsion->getAtomC()->getGlobalIndex();        
368 >        d = torsion->getAtomD()->getGlobalIndex();        
369  
370 <  rj[0] = Hmat[0][1];
371 <  rj[1] = Hmat[1][1];
372 <  rj[2] = Hmat[2][1];
370 >        exclude_.removePair(a, b);
371 >        exclude_.removePair(a, c);
372 >        exclude_.removePair(a, d);
373 >        exclude_.removePair(b, c);
374 >        exclude_.removePair(b, d);
375 >        exclude_.removePair(c, d);        
376 >    }
377  
378 <  rk[0] = Hmat[0][2];
274 <  rk[1] = Hmat[1][2];
275 <  rk[2] = Hmat[2][2];
276 <    
277 <  crossProduct3(ri, rj, rij);
278 <  distXY = dotProduct3(rk,rij) / norm3(rij);
378 > }
379  
280  crossProduct3(rj,rk, rjk);
281  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
380  
381 <  crossProduct3(rk,ri, rki);
382 <  distZX = dotProduct3(rj,rki) / norm3(rki);
381 > void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
382 >    int curStampId;
383  
384 <  minDist = min(min(distXY, distYZ), distZX);
385 <  return minDist/2;
386 <  
384 >    //index from 0
385 >    curStampId = molStampIds_.size();
386 >
387 >    moleculeStamps_.push_back(molStamp);
388 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
389   }
390  
391 < void SimInfo::wrapVector( double thePos[3] ){
391 > void SimInfo::update() {
392  
393 <  int i;
294 <  double scaled[3];
393 >    setupSimType();
394  
395 <  if( !orthoRhombic ){
396 <    // calc the scaled coordinates.
397 <  
395 > #ifdef IS_MPI
396 >    setupFortranParallel();
397 > #endif
398  
399 <    matVecMul3(HmatInv, thePos, scaled);
301 <    
302 <    for(i=0; i<3; i++)
303 <      scaled[i] -= roundMe(scaled[i]);
304 <    
305 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
306 <    
307 <    matVecMul3(Hmat, scaled, thePos);
399 >    setupFortranSim();
400  
401 <  }
402 <  else{
403 <    // calc the scaled coordinates.
401 >    //setup fortran force field
402 >    /** @deprecate */    
403 >    int isError = 0;
404 >    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
405 >    if(isError){
406 >        sprintf( painCave.errMsg,
407 >         "ForceField error: There was an error initializing the forceField in fortran.\n" );
408 >        painCave.isFatal = 1;
409 >        simError();
410 >    }
411 >  
412      
413 <    for(i=0; i<3; i++)
414 <      scaled[i] = thePos[i]*HmatInv[i][i];
415 <    
416 <    // wrap the scaled coordinates
417 <    
418 <    for(i=0; i<3; i++)
419 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
413 >    setupCutoff();
414 >
415 >    calcNdf();
416 >    calcNdfRaw();
417 >    calcNdfTrans();
418 >
419 >    fortranInitialized_ = true;
420   }
421  
422 + std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
423 +    SimInfo::MoleculeIterator mi;
424 +    Molecule* mol;
425 +    Molecule::AtomIterator ai;
426 +    Atom* atom;
427 +    std::set<AtomType*> atomTypes;
428  
429 < int SimInfo::getNDF(){
331 <  int ndf_local;
429 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
430  
431 <  ndf_local = 0;
432 <  
433 <  for(int i = 0; i < integrableObjects.size(); i++){
434 <    ndf_local += 3;
337 <    if (integrableObjects[i]->isDirectional()) {
338 <      if (integrableObjects[i]->isLinear())
339 <        ndf_local += 2;
340 <      else
341 <        ndf_local += 3;
431 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
432 >            atomTypes.insert(atom->getAtomType());
433 >        }
434 >        
435      }
343  }
436  
437 <  // n_constraints is local, so subtract them on each processor:
437 >    return atomTypes;        
438 > }
439  
440 <  ndf_local -= n_constraints;
440 > void SimInfo::setupSimType() {
441 >    std::set<AtomType*>::iterator i;
442 >    std::set<AtomType*> atomTypes;
443 >    atomTypes = getUniqueAtomTypes();
444 >    
445 >    int useLennardJones = 0;
446 >    int useElectrostatic = 0;
447 >    int useEAM = 0;
448 >    int useCharge = 0;
449 >    int useDirectional = 0;
450 >    int useDipole = 0;
451 >    int useGayBerne = 0;
452 >    int useSticky = 0;
453 >    int useShape = 0;
454 >    int useFLARB = 0; //it is not in AtomType yet
455 >    int useDirectionalAtom = 0;    
456 >    int useElectrostatics = 0;
457 >    //usePBC and useRF are from simParams
458 >    bool usePBC = simParams_->getPBC();
459 >    bool useRF = simParams_->getUseRF();
460  
461 < #ifdef IS_MPI
462 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
463 < #else
464 <  ndf = ndf_local;
465 < #endif
461 >    //loop over all of the atom types
462 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
463 >        useLennardJones |= (*i)->isLennardJones();
464 >        useElectrostatic |= (*i)->isElectrostatic();
465 >        useEAM |= (*i)->isEAM();
466 >        useCharge |= (*i)->isCharge();
467 >        useDirectional |= (*i)->isDirectional();
468 >        useDipole |= (*i)->isDipole();
469 >        useGayBerne |= (*i)->isGayBerne();
470 >        useSticky |= (*i)->isSticky();
471 >        useShape |= (*i)->isShape();
472 >    }
473  
474 <  // nZconstraints is global, as are the 3 COM translations for the
475 <  // entire system:
474 >    if (useSticky || useDipole || useGayBerne || useShape) {
475 >        useDirectionalAtom = 1;
476 >    }
477  
478 <  ndf = ndf - 3 - nZconstraints;
478 >    if (useCharge || useDipole) {
479 >        useElectrostatics = 1;
480 >    }
481  
482 <  return ndf;
483 < }
482 > #ifdef IS_MPI    
483 >    int temp;
484  
485 < int SimInfo::getNDFraw() {
486 <  int ndfRaw_local;
485 >    temp = usePBC;
486 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
487  
488 <  // Raw degrees of freedom that we have to set
489 <  ndfRaw_local = 0;
488 >    temp = useDirectionalAtom;
489 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
490  
491 <  for(int i = 0; i < integrableObjects.size(); i++){
492 <    ndfRaw_local += 3;
371 <    if (integrableObjects[i]->isDirectional()) {
372 <       if (integrableObjects[i]->isLinear())
373 <        ndfRaw_local += 2;
374 <      else
375 <        ndfRaw_local += 3;
376 <    }
377 <  }
378 <    
379 < #ifdef IS_MPI
380 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
381 < #else
382 <  ndfRaw = ndfRaw_local;
383 < #endif
491 >    temp = useLennardJones;
492 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
493  
494 <  return ndfRaw;
495 < }
494 >    temp = useElectrostatics;
495 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
496  
497 < int SimInfo::getNDFtranslational() {
498 <  int ndfTrans_local;
497 >    temp = useCharge;
498 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
499  
500 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
500 >    temp = useDipole;
501 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
502  
503 +    temp = useSticky;
504 +    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
505  
506 < #ifdef IS_MPI
507 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
396 < #else
397 <  ndfTrans = ndfTrans_local;
398 < #endif
506 >    temp = useGayBerne;
507 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
508  
509 <  ndfTrans = ndfTrans - 3 - nZconstraints;
509 >    temp = useEAM;
510 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
511  
512 <  return ndfTrans;
513 < }
512 >    temp = useShape;
513 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
514  
515 < int SimInfo::getTotIntegrableObjects() {
516 <  int nObjs_local;
407 <  int nObjs;
515 >    temp = useFLARB;
516 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
517  
518 <  nObjs_local =  integrableObjects.size();
518 >    temp = useRF;
519 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
520 >    
521 > #endif
522  
523 +    fInfo_.SIM_uses_PBC = usePBC;    
524 +    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
525 +    fInfo_.SIM_uses_LennardJones = useLennardJones;
526 +    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
527 +    fInfo_.SIM_uses_Charges = useCharge;
528 +    fInfo_.SIM_uses_Dipoles = useDipole;
529 +    fInfo_.SIM_uses_Sticky = useSticky;
530 +    fInfo_.SIM_uses_GayBerne = useGayBerne;
531 +    fInfo_.SIM_uses_EAM = useEAM;
532 +    fInfo_.SIM_uses_Shapes = useShape;
533 +    fInfo_.SIM_uses_FLARB = useFLARB;
534 +    fInfo_.SIM_uses_RF = useRF;
535  
536 < #ifdef IS_MPI
413 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
414 < #else
415 <  nObjs = nObjs_local;
416 < #endif
536 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
537  
538 +        if (simParams_->haveDielectric()) {
539 +            fInfo_.dielect = simParams_->getDielectric();
540 +        } else {
541 +            sprintf(painCave.errMsg,
542 +                    "SimSetup Error: No Dielectric constant was set.\n"
543 +                    "\tYou are trying to use Reaction Field without"
544 +                    "\tsetting a dielectric constant!\n");
545 +            painCave.isFatal = 1;
546 +            simError();
547 +        }
548 +        
549 +    } else {
550 +        fInfo_.dielect = 0.0;
551 +    }
552  
419  return nObjs;
553   }
554  
555 < void SimInfo::refreshSim(){
555 > void SimInfo::setupFortranSim() {
556 >    int isError;
557 >    int nExclude;
558 >    std::vector<int> fortranGlobalGroupMembership;
559 >    
560 >    nExclude = exclude_.getSize();
561 >    isError = 0;
562  
563 <  simtype fInfo;
564 <  int isError;
565 <  int n_global;
566 <  int* excl;
563 >    //globalGroupMembership_ is filled by SimCreator    
564 >    for (int i = 0; i < nGlobalAtoms_; i++) {
565 >        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
566 >    }
567  
568 <  fInfo.dielect = 0.0;
568 >    //calculate mass ratio of cutoff group
569 >    std::vector<double> mfact;
570 >    SimInfo::MoleculeIterator mi;
571 >    Molecule* mol;
572 >    Molecule::CutoffGroupIterator ci;
573 >    CutoffGroup* cg;
574 >    Molecule::AtomIterator ai;
575 >    Atom* atom;
576 >    double totalMass;
577  
578 <  if( useDipoles ){
579 <    if( useReactionField )fInfo.dielect = dielectric;
580 <  }
578 >    //to avoid memory reallocation, reserve enough space for mfact
579 >    mfact.reserve(getNCutoffGroups());
580 >    
581 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
582 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
583  
584 <  fInfo.SIM_uses_PBC = usePBC;
585 <  //fInfo.SIM_uses_LJ = 0;
586 <  fInfo.SIM_uses_LJ = useLJ;
587 <  fInfo.SIM_uses_sticky = useSticky;
439 <  //fInfo.SIM_uses_sticky = 0;
440 <  fInfo.SIM_uses_charges = useCharges;
441 <  fInfo.SIM_uses_dipoles = useDipoles;
442 <  //fInfo.SIM_uses_dipoles = 0;
443 <  fInfo.SIM_uses_RF = useReactionField;
444 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
584 >            totalMass = cg->getMass();
585 >            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
586 >                        mfact.push_back(atom->getMass()/totalMass);
587 >            }
588  
589 <  n_exclude = excludes->getSize();
590 <  excl = excludes->getFortranArray();
450 <  
451 < #ifdef IS_MPI
452 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
455 < #endif
456 <  
457 <  isError = 0;
458 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
589 >        }      
590 >    }
591  
592 <  if( isError ){
592 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
593 >    std::vector<int> identArray;
594 >
595 >    //to avoid memory reallocation, reserve enough space identArray
596 >    identArray.reserve(getNAtoms());
597      
598 <    sprintf( painCave.errMsg,
599 <             "There was an error setting the simulation information in fortran.\n" );
600 <    painCave.isFatal = 1;
601 <    painCave.severity = OOPSE_ERROR;
602 <    simError();
603 <  }
604 <  
598 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
599 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
600 >            identArray.push_back(atom->getIdent());
601 >        }
602 >    }    
603 >
604 >    //fill molMembershipArray
605 >    //molMembershipArray is filled by SimCreator    
606 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
607 >    for (int i = 0; i < nGlobalAtoms_; i++) {
608 >        molMembershipArray[i] = globalMolMembership_[i] + 1;
609 >    }
610 >    
611 >    //setup fortran simulation
612 >    //gloalExcludes and molMembershipArray should go away (They are never used)
613 >    //why the hell fortran need to know molecule?
614 >    //OOPSE = Object-Obfuscated Parallel Simulation Engine
615 >    int nGlobalExcludes = 0;
616 >    int* globalExcludes = NULL;
617 >    int* excludeList = exclude_.getExcludeList();
618 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
619 >                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
620 >                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
621 >
622 >    if( isError ){
623 >
624 >        sprintf( painCave.errMsg,
625 >                 "There was an error setting the simulation information in fortran.\n" );
626 >        painCave.isFatal = 1;
627 >        painCave.severity = OOPSE_ERROR;
628 >        simError();
629 >    }
630 >
631   #ifdef IS_MPI
632 <  sprintf( checkPointMsg,
633 <           "succesfully sent the simulation information to fortran.\n");
634 <  MPIcheckPoint();
632 >    sprintf( checkPointMsg,
633 >       "succesfully sent the simulation information to fortran.\n");
634 >    MPIcheckPoint();
635   #endif // is_mpi
481  
482  this->ndf = this->getNDF();
483  this->ndfRaw = this->getNDFraw();
484  this->ndfTrans = this->getNDFtranslational();
636   }
637  
487 void SimInfo::setDefaultRcut( double theRcut ){
488  
489  haveRcut = 1;
490  rCut = theRcut;
491  rList = rCut + 1.0;
492  
493  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 }
638  
639 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
639 > #ifdef IS_MPI
640 > void SimInfo::setupFortranParallel() {
641 >    
642 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
643 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
644 >    std::vector<int> localToGlobalCutoffGroupIndex;
645 >    SimInfo::MoleculeIterator mi;
646 >    Molecule::AtomIterator ai;
647 >    Molecule::CutoffGroupIterator ci;
648 >    Molecule* mol;
649 >    Atom* atom;
650 >    CutoffGroup* cg;
651 >    mpiSimData parallelData;
652 >    int isError;
653  
654 <  rSw = theRsw;
499 <  setDefaultRcut( theRcut );
500 < }
654 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
655  
656 +        //local index(index in DataStorge) of atom is important
657 +        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
658 +            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
659 +        }
660  
661 < void SimInfo::checkCutOffs( void ){
662 <  
663 <  if( boxIsInit ){
664 <    
665 <    //we need to check cutOffs against the box
666 <    
667 <    if( rCut > maxCutoff ){
668 <      sprintf( painCave.errMsg,
669 <               "cutoffRadius is too large for the current periodic box.\n"
670 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
671 <               "\tThis is larger than half of at least one of the\n"
672 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
673 <               "\n"
674 <               "\t[ %G %G %G ]\n"
675 <               "\t[ %G %G %G ]\n"
676 <               "\t[ %G %G %G ]\n",
677 <               rCut, currentTime,
678 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
679 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
680 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
681 <      painCave.severity = OOPSE_ERROR;
682 <      painCave.isFatal = 1;
683 <      simError();
684 <    }    
685 <  } else {
686 <    // initialize this stuff before using it, OK?
687 <    sprintf( painCave.errMsg,
688 <             "Trying to check cutoffs without a box.\n"
689 <             "\tOOPSE should have better programmers than that.\n" );
690 <    painCave.severity = OOPSE_ERROR;
691 <    painCave.isFatal = 1;
692 <    simError();      
693 <  }
536 <  
661 >        //local index of cutoff group is trivial, it only depends on the order of travesing
662 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
663 >            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
664 >        }        
665 >        
666 >    }
667 >
668 >    //fill up mpiSimData struct
669 >    parallelData.nMolGlobal = getNGlobalMolecules();
670 >    parallelData.nMolLocal = getNMolecules();
671 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
672 >    parallelData.nAtomsLocal = getNAtoms();
673 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
674 >    parallelData.nGroupsLocal = getNCutoffGroups();
675 >    parallelData.myNode = worldRank;
676 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors));
677 >
678 >    //pass mpiSimData struct and index arrays to fortran
679 >    setFsimParallel(parallelData, &(parallelData->nAtomsLocal),
680 >                    &localToGlobalAtomIndex[0],  &(parallelData->nGroupsLocal),
681 >                    &localToGlobalCutoffGroupIndex[0], &isError);
682 >
683 >    if (isError) {
684 >        sprintf(painCave.errMsg,
685 >                "mpiRefresh errror: fortran didn't like something we gave it.\n");
686 >        painCave.isFatal = 1;
687 >        simError();
688 >    }
689 >
690 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
691 >    MPIcheckPoint();
692 >
693 >
694   }
695  
696 < void SimInfo::addProperty(GenericData* prop){
696 > #endif
697  
698 <  map<string, GenericData*>::iterator result;
699 <  result = properties.find(prop->getID());
700 <  
701 <  //we can't simply use  properties[prop->getID()] = prop,
702 <  //it will cause memory leak if we already contain a propery which has the same name of prop
703 <  
704 <  if(result != properties.end()){
698 > double SimInfo::calcMaxCutoffRadius() {
699 >
700 >
701 >    std::set<AtomType*> atomTypes;
702 >    std::set<AtomType*>::iterator i;
703 >    std::vector<double> cutoffRadius;
704 >
705 >    //get the unique atom types
706 >    atomTypes = getUniqueAtomTypes();
707 >
708 >    //query the max cutoff radius among these atom types
709 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
710 >        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
711 >    }
712 >
713 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
714 > #ifdef IS_MPI
715 >    //pick the max cutoff radius among the processors
716 > #endif
717 >
718 >    return maxCutoffRadius;
719 > }
720 >
721 > void SimInfo::setupCutoff() {
722 >    double rcut_;  //cutoff radius
723 >    double rsw_; //switching radius
724      
725 <    delete (*result).second;
726 <    (*result).second = prop;
725 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
726 >        
727 >        if (!simParams_->haveRcut()){
728 >            sprintf(painCave.errMsg,
729 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
730 >                "\tOOPSE will use a default value of 15.0 angstroms"
731 >                "\tfor the cutoffRadius.\n");
732 >            painCave.isFatal = 0;
733 >            simError();
734 >            rcut_ = 15.0;
735 >        } else{
736 >            rcut_ = simParams_->getRcut();
737 >        }
738 >
739 >        if (!simParams_->haveRsw()){
740 >            sprintf(painCave.errMsg,
741 >                "SimCreator Warning: No value was set for switchingRadius.\n"
742 >                "\tOOPSE will use a default value of\n"
743 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
744 >            painCave.isFatal = 0;
745 >            simError();
746 >            rsw_ = 0.95 * rcut_;
747 >        } else{
748 >            rsw_ = simParams_->getRsw();
749 >        }
750 >
751 >    } else {
752 >        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
753 >        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
754 >        
755 >        if (simParams_->haveRcut()) {
756 >            rcut_ = simParams_->getRcut();
757 >        } else {
758 >            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
759 >            rcut_ = calcMaxCutoffRadius();
760 >        }
761 >
762 >        if (simParams_->haveRsw()) {
763 >            rsw_  = simParams_->getRsw();
764 >        } else {
765 >            rsw_ = rcut_;
766 >        }
767 >    
768 >    }
769 >        
770 >    double rnblist = rcut_ + 1; // skin of neighbor list
771 >
772 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
773 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
774 > }
775 >
776 > void SimInfo::addProperty(GenericData* genData) {
777 >    properties_.addProperty(genData);  
778 > }
779 >
780 > void SimInfo::removeProperty(const std::string& propName) {
781 >    properties_.removeProperty(propName);  
782 > }
783 >
784 > void SimInfo::clearProperties() {
785 >    properties_.clearProperties();
786 > }
787 >
788 > std::vector<std::string> SimInfo::getPropertyNames() {
789 >    return properties_.getPropertyNames();  
790 > }
791        
792 <  }
793 <  else{
792 > std::vector<GenericData*> SimInfo::getProperties() {
793 >    return properties_.getProperties();
794 > }
795  
796 <    properties[prop->getID()] = prop;
796 > GenericData* SimInfo::getPropertyByName(const std::string& propName) {
797 >    return properties_.getPropertyByName(propName);
798 > }
799  
800 <  }
800 > void SimInfo::setSnapshotManager(SnapshotManager* sman) {
801 >    sman_ = sman;
802 >
803 >    Molecule* mol;
804 >    RigidBody* rb;
805 >    Atom* atom;
806 >    SimInfo::MoleculeIterator mi;
807 >    Molecule::RigidBodyIterator rbIter;
808 >    Molecule::AtomIterator atomIter;;
809 >
810 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
811 >        
812 >        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
813 >            atom->setSnapshotManager(sman_);
814 >        }
815 >        
816 >        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
817 >            rb->setSnapshotManager(sman_);
818 >        }
819 >    }    
820      
821   }
822  
823 < GenericData* SimInfo::getProperty(const string& propName){
823 > Vector3d SimInfo::getComVel(){
824 >    SimInfo::MoleculeIterator i;
825 >    Molecule* mol;
826 >
827 >    Vector3d comVel(0.0);
828 >    double totalMass = 0.0;
829 >    
830  
831 <  map<string, GenericData*>::iterator result;
832 <  
833 <  //string lowerCaseName = ();
834 <  
835 <  result = properties.find(propName);
836 <  
837 <  if(result != properties.end())
838 <    return (*result).second;  
839 <  else  
572 <    return NULL;  
831 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
832 >        double mass = mol->getMass();
833 >        totalMass += mass;
834 >        comVel += mass * mol->getComVel();
835 >    }  
836 >
837 >    comVel /= totalMass;
838 >
839 >    return comVel;
840   }
841  
842 + Vector3d SimInfo::getCom(){
843 +    SimInfo::MoleculeIterator i;
844 +    Molecule* mol;
845  
846 < void SimInfo::getFortranGroupArrays(SimInfo* info,
847 <                                    vector<int>& FglobalGroupMembership,
848 <                                    vector<double>& mfact){
849 <  
850 <  Molecule* myMols;
851 <  Atom** myAtoms;
852 <  int numAtom;
853 <  double mtot;
584 <  int numMol;
585 <  int numCutoffGroups;
586 <  CutoffGroup* myCutoffGroup;
587 <  vector<CutoffGroup*>::iterator iterCutoff;
588 <  Atom* cutoffAtom;
589 <  vector<Atom*>::iterator iterAtom;
590 <  int atomIndex;
591 <  double totalMass;
592 <  
593 <  mfact.clear();
594 <  FglobalGroupMembership.clear();
595 <  
846 >    Vector3d com(0.0);
847 >    double totalMass = 0.0;
848 >    
849 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
850 >        double mass = mol->getMass();
851 >        totalMass += mass;
852 >        com += mass * mol->getCom();
853 >    }  
854  
855 <  // Fix the silly fortran indexing problem
598 < #ifdef IS_MPI
599 <  numAtom = mpiSim->getNAtomsGlobal();
600 < #else
601 <  numAtom = n_atoms;
602 < #endif
603 <  for (int i = 0; i < numAtom; i++)
604 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605 <  
855 >    com /= totalMass;
856  
857 <  myMols = info->molecules;
608 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
857 >    return com;
858  
859 <      totalMass = myCutoffGroup->getMass();
616 <      
617 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
618 <          cutoffAtom != NULL;
619 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
620 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
621 <      }  
622 <    }
623 <  }
859 > }        
860  
861 + std::ostream& operator <<(std::ostream& o, SimInfo& info) {
862 +
863 +    return o;
864   }
865 +
866 + }//end namespace oopse
867 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines