ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/brains/SimInfo.cpp
Revision: 1804
Committed: Tue Nov 30 19:58:25 2004 UTC (19 years, 7 months ago) by tim
File size: 24991 byte(s)
Log Message:
fix Thermo

File Contents

# Content
1 /*
2 * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3 *
4 * Contact: oopse@oopse.org
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * as published by the Free Software Foundation; either version 2.1
9 * of the License, or (at your option) any later version.
10 * All we ask is that proper credit is given for our work, which includes
11 * - but is not limited to - adding the above copyright notice to the beginning
12 * of your source code files, and to any copyright notice that you may distribute
13 * with programs based on this work.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 */
25
26 /**
27 * @file SimInfo.cpp
28 * @author tlin
29 * @date 11/02/2004
30 * @version 1.0
31 */
32
33 #include <algorithm>
34
35 #include "brains/SimInfo.hpp"
36 #include "primitives/Molecule.hpp"
37 #include "UseTheForce/notifyCutoffs_interface.h"
38 #include "utils/MemoryUtils.hpp"
39 #include "utils/simError.h"
40
41 namespace oopse {
42
43 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
44 ForceField* ff, Globals* globals) :
45 forceField_(ff), globals_(globals), nAtoms_(0), nBonds_(0),
46 nBends_(0), nTorsions_(0), nRigidBodies_(0), nIntegrableObjects_(0),
47 nCutoffGroups_(0), nConstraints_(0), nZconstraint_(0), sman_(NULL),
48 fortranInitialized_(false) {
49
50 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
51 MoleculeStamp* molStamp;
52 int nMolWithSameStamp;
53 int nCutoffAtoms; // number of atoms belong to cutoff groups
54 int nGroups; //total cutoff groups defined in meta-data file
55 CutoffGroupStamp* cgStamp;
56 int nAtomsInGroups;
57 int nCutoffGroupsInStamp;
58
59 RigidBodyStamp* rbStamp;
60 int nAtomsInRigidBodies;
61 int nRigidBodiesInStamp;
62 int nRigidAtoms;
63 int nRigidBodies;
64
65 nGlobalAtoms_ = 0;
66
67 nGroups = 0;
68 nCutoffAtoms = 0;
69 nRigidBodies = 0;
70
71 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
72 molStamp = i->first;
73 nMolWithSameStamp = i->second;
74
75 addMoleculeStamp(molStamp, nMolWithSameStamp);
76
77 //calculate atoms in molecules
78 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
79
80
81 //calculate atoms in cutoff groups
82 nAtomsInGroups = 0;
83 nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
84
85 for (int j=0; j < nCutoffGroupsInStamp; j++) {
86 cgStamp = molStamp->getCutoffGroup(j);
87 nAtomsInGroups += cgStamp->getNMembers();
88 }
89
90 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
91 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
92
93 //calculate atoms in rigid bodies
94 nAtomsInRigidBodies = 0;
95 nRigidBodiesInStamp = molStamp->getNCutoffGroups();
96
97 for (int j=0; j < nRigidBodiesInStamp; j++) {
98 rbStamp = molStamp->getRigidBody(j);
99 nRigidBodiesInStamp += rbStamp->getNMembers();
100 }
101
102 nRigidBodies += nRigidBodiesInStamp * nMolWithSameStamp;
103 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
104
105 }
106
107 //every free atom (atom does not belong to cutoff groups) is a cutoff group
108 //therefore the total number of cutoff groups in the system is equal to
109 //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
110 //file plus the number of cutoff groups defined in meta-data file
111 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
112
113 //every free atom (atom does not belong to rigid bodies) is a rigid body
114 //therefore the total number of cutoff groups in the system is equal to
115 //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
116 //file plus the number of rigid bodies defined in meta-data file
117 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nRigidBodies;
118
119 //initialize globalGroupMembership_, every element of this array will be 0
120 globalGroupMembership_.insert(globalGroupMembership_.end(), nGlobalAtoms_, 0);
121
122 nGlobalMols_ = molStampIds_.size();
123
124 #ifdef IS_MPI
125 molToProcMap_.resize(nGlobalMols_);
126 #endif
127
128 }
129
130 SimInfo::~SimInfo() {
131 //MemoryUtils::deleteVectorOfPointer(molecules_);
132
133 MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
134
135 delete sman_;
136 delete globals_;
137 delete forceField_;
138
139 }
140
141
142 bool SimInfo::addMolecule(Molecule* mol) {
143 MoleculeIterator i;
144
145 i = molecules_.find(mol->getGlobalIndex());
146 if (i != molecules_.end() ) {
147
148 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
149
150 nAtoms_ += mol->getNAtoms();
151 nBonds_ += mol->getNBonds();
152 nBends_ += mol->getNBends();
153 nTorsions_ += mol->getNTorsions();
154 nRigidBodies_ += mol->getNRigidBodies();
155 nIntegrableObjects_ += mol->getNIntegrableObjects();
156 nCutoffGroups_ += mol->getNCutoffGroups();
157 nConstraints_ += mol->getNConstraints();
158
159 return true;
160 } else {
161 return false;
162 }
163 }
164
165 bool SimInfo::removeMolecule(Molecule* mol) {
166 MoleculeIterator i;
167 i = molecules_.find(mol->getGlobalIndex());
168
169 if (i != molecules_.end() ) {
170
171 assert(mol == i->second);
172
173 nAtoms_ -= mol->getNAtoms();
174 nBonds_ -= mol->getNBonds();
175 nBends_ -= mol->getNBends();
176 nTorsions_ -= mol->getNTorsions();
177 nRigidBodies_ -= mol->getNRigidBodies();
178 nIntegrableObjects_ -= mol->getNIntegrableObjects();
179 nCutoffGroups_ -= mol->getNCutoffGroups();
180 nConstraints_ -= mol->getNConstraints();
181
182 molecules_.erase(mol->getGlobalIndex());
183
184 delete mol;
185
186 return true;
187 } else {
188 return false;
189 }
190
191
192 }
193
194
195 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
196 i = molecules_.begin();
197 return i == molecules_.end() ? NULL : i->second;
198 }
199
200 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
201 ++i;
202 return i == molecules_.end() ? NULL : i->second;
203 }
204
205
206 void SimInfo::calcNdf() {
207 int ndf_local;
208 MoleculeIterator i;
209 std::vector<StuntDouble*>::iterator j;
210 Molecule* mol;
211 StuntDouble* integrableObject;
212
213 ndf_local = 0;
214
215 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
216 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
217 integrableObject = mol->nextIntegrableObject(j)) {
218
219 ndf_local += 3;
220
221 if (integrableObject->isDirectional()) {
222 if (integrableObject->isLinear()) {
223 ndf_local += 2;
224 } else {
225 ndf_local += 3;
226 }
227 }
228
229 }//end for (integrableObject)
230 }// end for (mol)
231
232 // n_constraints is local, so subtract them on each processor
233 ndf_local -= nConstraints_;
234
235 #ifdef IS_MPI
236 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
237 #else
238 ndf_ = ndf_local;
239 #endif
240
241 // nZconstraints_ is global, as are the 3 COM translations for the
242 // entire system:
243 ndf_ = ndf_ - 3 - nZconstraint_;
244
245 }
246
247 void SimInfo::calcNdfRaw() {
248 int ndfRaw_local;
249
250 MoleculeIterator i;
251 std::vector<StuntDouble*>::iterator j;
252 Molecule* mol;
253 StuntDouble* integrableObject;
254
255 // Raw degrees of freedom that we have to set
256 ndfRaw_local = 0;
257
258 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
259 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
260 integrableObject = mol->nextIntegrableObject(j)) {
261
262 ndfRaw_local += 3;
263
264 if (integrableObject->isDirectional()) {
265 if (integrableObject->isLinear()) {
266 ndfRaw_local += 2;
267 } else {
268 ndfRaw_local += 3;
269 }
270 }
271
272 }
273 }
274
275 #ifdef IS_MPI
276 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
277 #else
278 ndfRaw_ = ndfRaw_local;
279 #endif
280 }
281
282 void SimInfo::calcNdfTrans() {
283 int ndfTrans_local;
284
285 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
286
287
288 #ifdef IS_MPI
289 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
290 #else
291 ndfTrans_ = ndfTrans_local;
292 #endif
293
294 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
295
296 }
297
298 void SimInfo::addExcludePairs(Molecule* mol) {
299 std::vector<Bond*>::iterator bondIter;
300 std::vector<Bend*>::iterator bendIter;
301 std::vector<Torsion*>::iterator torsionIter;
302 Bond* bond;
303 Bend* bend;
304 Torsion* torsion;
305 int a;
306 int b;
307 int c;
308 int d;
309
310 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
311 a = bond->getAtomA()->getGlobalIndex();
312 b = bond->getAtomB()->getGlobalIndex();
313 exclude_.addPair(a, b);
314 }
315
316 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
317 a = bend->getAtomA()->getGlobalIndex();
318 b = bend->getAtomB()->getGlobalIndex();
319 c = bend->getAtomC()->getGlobalIndex();
320
321 exclude_.addPair(a, b);
322 exclude_.addPair(a, c);
323 exclude_.addPair(b, c);
324 }
325
326 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
327 a = torsion->getAtomA()->getGlobalIndex();
328 b = torsion->getAtomB()->getGlobalIndex();
329 c = torsion->getAtomC()->getGlobalIndex();
330 d = torsion->getAtomD()->getGlobalIndex();
331
332 exclude_.addPair(a, b);
333 exclude_.addPair(a, c);
334 exclude_.addPair(a, d);
335 exclude_.addPair(b, c);
336 exclude_.addPair(b, d);
337 exclude_.addPair(c, d);
338 }
339
340
341 }
342
343 void SimInfo::removeExcludePairs(Molecule* mol) {
344 std::vector<Bond*>::iterator bondIter;
345 std::vector<Bend*>::iterator bendIter;
346 std::vector<Torsion*>::iterator torsionIter;
347 Bond* bond;
348 Bend* bend;
349 Torsion* torsion;
350 int a;
351 int b;
352 int c;
353 int d;
354
355 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
356 a = bond->getAtomA()->getGlobalIndex();
357 b = bond->getAtomB()->getGlobalIndex();
358 exclude_.removePair(a, b);
359 }
360
361 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
362 a = bend->getAtomA()->getGlobalIndex();
363 b = bend->getAtomB()->getGlobalIndex();
364 c = bend->getAtomC()->getGlobalIndex();
365
366 exclude_.removePair(a, b);
367 exclude_.removePair(a, c);
368 exclude_.removePair(b, c);
369 }
370
371 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
372 a = torsion->getAtomA()->getGlobalIndex();
373 b = torsion->getAtomB()->getGlobalIndex();
374 c = torsion->getAtomC()->getGlobalIndex();
375 d = torsion->getAtomD()->getGlobalIndex();
376
377 exclude_.removePair(a, b);
378 exclude_.removePair(a, c);
379 exclude_.removePair(a, d);
380 exclude_.removePair(b, c);
381 exclude_.removePair(b, d);
382 exclude_.removePair(c, d);
383 }
384
385 }
386
387
388 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
389 int curStampId;
390
391 //index from 0
392 curStampId = molStampIds_.size();
393
394 moleculeStamps_.push_back(molStamp);
395 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
396 }
397
398 void SimInfo::update() {
399
400 setupSimType();
401
402 #ifdef IS_MPI
403 setupFortranParallel();
404 #endif
405
406 setupFortranSim();
407
408 setupCutoff();
409
410 //notify fortran whether reaction field is used or not. It is deprecated now
411 //int isError = 0;
412 //initFortranFF( &useReactionField, &isError );
413
414 //if(isError){
415 // sprintf( painCave.errMsg,
416 // "SimCreator::initFortran() error: There was an error initializing the forceField in fortran.\n" );
417 // painCave.isFatal = 1;
418 // simError();
419 //}
420
421 calcNdf();
422 calcNdfRaw();
423 calcNdfTrans();
424
425 fortranInitialized_ = true;
426 }
427
428 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
429 SimInfo::MoleculeIterator mi;
430 Molecule* mol;
431 Molecule::AtomIterator ai;
432 Atom* atom;
433 std::set<AtomType*> atomTypes;
434
435 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
436
437 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
438 atomTypes.insert(atom->getAtomType());
439 }
440
441 }
442
443 return atomTypes;
444 }
445
446 void SimInfo::setupSimType() {
447 std::set<AtomType*>::iterator i;
448 std::set<AtomType*> atomTypes;
449 atomTypes = getUniqueAtomTypes();
450
451 int useLennardJones = 0;
452 int useElectrostatic = 0;
453 int useEAM = 0;
454 int useCharge = 0;
455 int useDirectional = 0;
456 int useDipole = 0;
457 int useGayBerne = 0;
458 int useSticky = 0;
459 int useShape = 0;
460 int useFLARB = 0; //it is not in AtomType yet
461 int useDirectionalAtom = 0;
462 int useElectrostatics = 0;
463 //usePBC and useRF are from globals
464 bool usePBC = globals_->getPBC();
465 bool useRF = globals_->getUseRF();
466
467 //loop over all of the atom types
468 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
469 useLennardJones |= (*i)->isLennardJones();
470 useElectrostatic |= (*i)->isElectrostatic();
471 useEAM |= (*i)->isEAM();
472 useCharge |= (*i)->isCharge();
473 useDirectional |= (*i)->isDirectional();
474 useDipole |= (*i)->isDipole();
475 useGayBerne |= (*i)->isGayBerne();
476 useSticky |= (*i)->isSticky();
477 useShape |= (*i)->isShape();
478 }
479
480 if (useSticky || useDipole || useGayBerne || useShape) {
481 useDirectionalAtom = 1;
482 }
483
484 if (useCharge || useDipole) {
485 useElectrostatics = 1;
486 }
487
488 #ifdef IS_MPI
489 int temp;
490
491 temp = usePBC;
492 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
493
494 temp = useDirectionalAtom;
495 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
496
497 temp = useLennardJones;
498 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
499
500 temp = useElectrostatics;
501 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
502
503 temp = useCharge;
504 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
505
506 temp = useDipole;
507 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
508
509 temp = useSticky;
510 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
511
512 temp = useGayBerne;
513 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
514
515 temp = useEAM;
516 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
517
518 temp = useShape;
519 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
520
521 temp = useFLARB;
522 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
523
524 temp = useRF;
525 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
526
527 #endif
528
529 fInfo_.SIM_uses_PBC = usePBC;
530 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
531 fInfo_.SIM_uses_LennardJones = useLennardJones;
532 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
533 fInfo_.SIM_uses_Charges = useCharge;
534 fInfo_.SIM_uses_Dipoles = useDipole;
535 fInfo_.SIM_uses_Sticky = useSticky;
536 fInfo_.SIM_uses_GayBerne = useGayBerne;
537 fInfo_.SIM_uses_EAM = useEAM;
538 fInfo_.SIM_uses_Shapes = useShape;
539 fInfo_.SIM_uses_FLARB = useFLARB;
540 fInfo_.SIM_uses_RF = useRF;
541
542 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
543
544 if (globals_->haveDielectric()) {
545 fInfo_.dielect = globals_->getDielectric();
546 } else {
547 sprintf(painCave.errMsg,
548 "SimSetup Error: No Dielectric constant was set.\n"
549 "\tYou are trying to use Reaction Field without"
550 "\tsetting a dielectric constant!\n");
551 painCave.isFatal = 1;
552 simError();
553 }
554
555 } else {
556 fInfo_.dielect = 0.0;
557 }
558
559 }
560
561 void SimInfo::setupFortranSim() {
562 int isError;
563 int nExclude;
564 std::vector<int> fortranGlobalGroupMembership;
565
566 nExclude = exclude_.getSize();
567 isError = 0;
568
569 //globalGroupMembership_ is filled by SimCreator
570 for (int i = 0; i < nGlobalAtoms_; i++) {
571 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
572 }
573
574 //calculate mass ratio of cutoff group
575 std::vector<double> mfact;
576 SimInfo::MoleculeIterator mi;
577 Molecule* mol;
578 Molecule::CutoffGroupIterator ci;
579 CutoffGroup* cg;
580 Molecule::AtomIterator ai;
581 Atom* atom;
582 double totalMass;
583
584 //to avoid memory reallocation, reserve enough space for mfact
585 mfact.reserve(getNCutoffGroups());
586
587 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
588 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
589
590 totalMass = cg->getMass();
591 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
592 mfact.push_back(atom->getMass()/totalMass);
593 }
594
595 }
596 }
597
598 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
599 std::vector<int> identArray;
600
601 //to avoid memory reallocation, reserve enough space identArray
602 identArray.reserve(getNAtoms());
603
604 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
605 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
606 identArray.push_back(atom->getIdent());
607 }
608 }
609
610 //fill molMembershipArray
611 //molMembershipArray is filled by SimCreator
612 std::vector<int> molMembershipArray(nGlobalAtoms_);
613 for (int i = 0; i < nGlobalAtoms_; i++) {
614 molMembershipArray.push_back(globalMolMembership_[i] + 1);
615 }
616
617 //setup fortran simulation
618 //gloalExcludes and molMembershipArray should go away (They are never used)
619 //why the hell fortran need to know molecule?
620 //OOPSE = Object-Obfuscated Parallel Simulation Engine
621 int nGlobalExcludes = 0;
622 int* globalExcludes = NULL;
623 int* excludeList = exclude_.getExcludeList();
624 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
625 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
626 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
627
628 if( isError ){
629
630 sprintf( painCave.errMsg,
631 "There was an error setting the simulation information in fortran.\n" );
632 painCave.isFatal = 1;
633 painCave.severity = OOPSE_ERROR;
634 simError();
635 }
636
637 #ifdef IS_MPI
638 sprintf( checkPointMsg,
639 "succesfully sent the simulation information to fortran.\n");
640 MPIcheckPoint();
641 #endif // is_mpi
642 }
643
644
645 #ifdef IS_MPI
646 void SimInfo::setupFortranParallel() {
647
648 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
649 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
650 std::vector<int> localToGlobalCutoffGroupIndex;
651 SimInfo::MoleculeIterator mi;
652 Molecule::AtomIterator ai;
653 Molecule::CutoffGroupIterator ci;
654 Molecule* mol;
655 Atom* atom;
656 CutoffGroup* cg;
657 mpiSimData parallelData;
658 int isError;
659
660 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
661
662 //local index(index in DataStorge) of atom is important
663 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
664 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
665 }
666
667 //local index of cutoff group is trivial, it only depends on the order of travesing
668 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
669 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
670 }
671
672 }
673
674 //fill up mpiSimData struct
675 parallelData.nMolGlobal = getNGlobalMolecules();
676 parallelData.nMolLocal = getNMolecules();
677 parallelData.nAtomsGlobal = getNGlobalAtoms();
678 parallelData.nAtomsLocal = getNAtoms();
679 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
680 parallelData.nGroupsLocal = getNCutoffGroups();
681 parallelData.myNode = worldRank;
682 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors));
683
684 //pass mpiSimData struct and index arrays to fortran
685 setFsimParallel(parallelData, &(parallelData->nAtomsLocal),
686 &localToGlobalAtomIndex[0], &(parallelData->nGroupsLocal),
687 &localToGlobalCutoffGroupIndex[0], &isError);
688
689 if (isError) {
690 sprintf(painCave.errMsg,
691 "mpiRefresh errror: fortran didn't like something we gave it.\n");
692 painCave.isFatal = 1;
693 simError();
694 }
695
696 sprintf(checkPointMsg, " mpiRefresh successful.\n");
697 MPIcheckPoint();
698
699
700 }
701
702 #endif
703
704 double SimInfo::calcMaxCutoffRadius() {
705
706
707 std::set<AtomType*> atomTypes;
708 std::set<AtomType*>::iterator i;
709 std::vector<double> cutoffRadius;
710
711 //get the unique atom types
712 atomTypes = getUniqueAtomTypes();
713
714 //query the max cutoff radius among these atom types
715 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
716 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
717 }
718
719 double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
720 #ifdef IS_MPI
721 //pick the max cutoff radius among the processors
722 #endif
723
724 return maxCutoffRadius;
725 }
726
727 void SimInfo::setupCutoff() {
728 double rcut_; //cutoff radius
729 double rsw_; //switching radius
730
731 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
732
733 if (!globals_->haveRcut()){
734 sprintf(painCave.errMsg,
735 "SimCreator Warning: No value was set for the cutoffRadius.\n"
736 "\tOOPSE will use a default value of 15.0 angstroms"
737 "\tfor the cutoffRadius.\n");
738 painCave.isFatal = 0;
739 simError();
740 rcut_ = 15.0;
741 } else{
742 rcut_ = globals_->getRcut();
743 }
744
745 if (!globals_->haveRsw()){
746 sprintf(painCave.errMsg,
747 "SimCreator Warning: No value was set for switchingRadius.\n"
748 "\tOOPSE will use a default value of\n"
749 "\t0.95 * cutoffRadius for the switchingRadius\n");
750 painCave.isFatal = 0;
751 simError();
752 rsw_ = 0.95 * rcut_;
753 } else{
754 rsw_ = globals_->getRsw();
755 }
756
757 } else {
758 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
759 //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
760
761 if (globals_->haveRcut()) {
762 rcut_ = globals_->getRcut();
763 } else {
764 //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
765 rcut_ = calcMaxCutoffRadius();
766 }
767
768 if (globals_->haveRsw()) {
769 rsw_ = globals_->getRsw();
770 } else {
771 rsw_ = rcut_;
772 }
773
774 }
775
776 double rnblist = rcut_ + 1; // skin of neighbor list
777
778 //Pass these cutoff radius etc. to fortran. This function should be called once and only once
779 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
780 }
781
782 void SimInfo::addProperty(GenericData* genData) {
783 properties_.addProperty(genData);
784 }
785
786 void SimInfo::removeProperty(const std::string& propName) {
787 properties_.removeProperty(propName);
788 }
789
790 void SimInfo::clearProperties() {
791 properties_.clearProperties();
792 }
793
794 std::vector<std::string> SimInfo::getPropertyNames() {
795 return properties_.getPropertyNames();
796 }
797
798 std::vector<GenericData*> SimInfo::getProperties() {
799 return properties_.getProperties();
800 }
801
802 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
803 return properties_.getPropertyByName(propName);
804 }
805
806
807 std::ostream& operator <<(ostream& o, SimInfo& info) {
808
809 return o;
810 }
811
812 }//end namespace oopse