ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/OOPSE-3.0/src/brains/SimInfo.hpp (file contents), Revision 1490 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/new_design/OOPSE-3.0/src/brains/SimInfo.hpp (file contents), Revision 1735 by tim, Fri Nov 12 17:40:03 2004 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 > *
4 > * Contact: oopse@oopse.org
5 > *
6 > * This program is free software; you can redistribute it and/or
7 > * modify it under the terms of the GNU Lesser General Public License
8 > * as published by the Free Software Foundation; either version 2.1
9 > * of the License, or (at your option) any later version.
10 > * All we ask is that proper credit is given for our work, which includes
11 > * - but is not limited to - adding the above copyright notice to the beginning
12 > * of your source code files, and to any copyright notice that you may distribute
13 > * with programs based on this work.
14 > *
15 > * This program is distributed in the hope that it will be useful,
16 > * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 > * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 > * GNU Lesser General Public License for more details.
19 > *
20 > * You should have received a copy of the GNU Lesser General Public License
21 > * along with this program; if not, write to the Free Software
22 > * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 > *
24 > */
25  
26 < #include <map>
27 < #include <string>
28 < #include <vector>
26 > /**
27 > * @file SimInfo.hpp
28 > * @author    tlin
29 > * @date  11/02/2004
30 > * @version 1.0
31 > */
32  
33 < #include "Atom.hpp"
34 < #include "RigidBody.hpp"
10 < #include "Molecule.hpp"
11 < #include "Exclude.hpp"
12 < #include "SkipList.hpp"
13 < #include "AbstractClasses.hpp"
14 < #include "MakeStamps.hpp"
15 < #include "SimState.hpp"
16 < #include "Restraints.hpp"
33 > #ifndef BRAINS_SIMMODEL_HPP
34 > #define BRAINS_SIMMODEL_HPP
35  
36 < #define __C
37 < #include "fSimulation.h"
38 < #include "fortranWrapDefines.hpp"
21 < #include "GenericData.hpp"
36 > #include <iostream>
37 > #include <vector>
38 > #include <utility>
39  
40 + #include "brains/fSimulation.h"
41 + #include "primitives/Molecule.hpp"
42 + #include "types/MoleculeStamp.hpp"
43 + #include "utils/PropertyMap.hpp"
44 + #include "io/Globals.hpp"
45  
46 < //#include "Minimizer.hpp"
25 < //#include "OOPSEMinimizer.hpp"
46 > namespace oopse{
47  
48 + /**
49 + * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
50 + * @brief As one of the heavy weight class of OOPSE, SimInfo
51 + * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
52 + * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
53 + * cutoff groups, constrains).
54 + * Another major change is the index. No matter single version or parallel version,  atoms and
55 + * rigid bodies have both global index and local index. Local index is not important to molecule as well as
56 + * cutoff group.
57 + */
58 + class SimInfo {
59 +    public:
60 +        typedef MoleculeIterator MoleculeIterator;
61  
62 < double roundMe( double x );
63 < class OOPSEMinimizer;
64 < class SimInfo{
62 >        /**
63 >         * Constructor of SimInfo
64 >         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
65 >         * second element is the total number of molecules with the same molecule stamp in the system
66 >         * @param ff pointer of a concrete ForceField instance
67 >         * @param globals
68 >         * @note
69 >         * <p>
70 >         * The major change of SimInfo
71 >         * </p>
72 >         */
73 >        SimInfo(const std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* globals);
74 >        virtual ~SimInfo();
75  
76 < public:
76 >        /**
77 >         * Adds a molecule
78 >         * @return return true if adding successfully, return false if the molecule is already in SimInfo
79 >         * @param mol molecule to be added
80 >         */
81 >        bool addMolecule(Molecule* mol);
82  
83 <  SimInfo();
84 <  ~SimInfo();
83 >        /**
84 >         * Removes a molecule from SimInfo
85 >         * @return true if removing successfully, return false if molecule is not in this SimInfo
86 >         */
87 >        bool removeMolecule(Molecule* mol);
88  
89 <  int n_atoms; // the number of atoms
90 <  Atom **atoms; // the array of atom objects
89 >        /** Returns the total number of molecules in the system. */
90 >        int getNGlobalMolecules() {
91 >            return nGlobalMols_;
92 >        }
93  
94 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
95 <  vector<StuntDouble*> integrableObjects;
96 <  
97 <  double tau[9]; // the stress tensor
94 >        /** Returns the total number of atoms in the system. */
95 >        int getNGlobalAtoms() {
96 >            return nGlobalAtoms_;
97 >        }
98  
99 <  int n_bonds;    // number of bends
100 <  int n_bends;    // number of bends
101 <  int n_torsions; // number of torsions
102 <  int n_oriented; // number of of atoms with orientation
103 <  int ndf;        // number of actual degrees of freedom
104 <  int ndfRaw;     // number of settable degrees of freedom
105 <  int ndfTrans;   // number of translational degrees of freedom
106 <  int nZconstraints; // the number of zConstraints
99 >        /** Returns the total number of cutoff groups in the system. */
100 >        int getNGlobalCutoffGroups() {
101 >            return nGlobalCutoffGroups_;
102 >        }
103 >        
104 >        /**
105 >         * Returns the number of local molecules.
106 >         * @return the number of local molecules
107 >         */
108 >        int getNMolecules() {
109 >            return molecules_.size();
110 >        }
111  
112 <  int setTemp;   // boolean to set the temperature at each sampleTime
113 <  int resetIntegrator; // boolean to reset the integrator
112 >        /** Returns the number of local atoms */
113 >        unsigned int getNAtoms() {
114 >            return nAtoms_;
115 >        }
116  
117 <  int n_dipoles; // number of dipoles
117 >        /** Returns the number of local bonds */        
118 >        unsigned int getNBonds(){
119 >            return nBonds_;
120 >        }
121  
122 <  int n_exclude;
123 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
124 <  int nGlobalExcludes;
125 <  int* globalExcludes; // same as above, but these guys participate in
63 <                       // no long range forces.
122 >        /** Returns the number of local bends */        
123 >        unsigned int getNBends() {
124 >            return nBends_;
125 >        }
126  
127 <  int* identArray;     // array of unique identifiers for the atoms
128 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
127 >        /** Returns the number of local torsions */        
128 >        unsigned int getNTorsions() {
129 >            return nTorsions_;
130 >        }
131  
132 <  int n_constraints; // the number of constraints on the system
132 >        /** Returns the number of local rigid bodies */        
133 >        unsigned int getNRigidBodies() {
134 >            return nRigidBodies_;
135 >        }
136  
137 <  int n_SRI;   // the number of short range interactions
137 >        /** Returns the number of local integrable objects */
138 >        unsigned int getNIntegrableObjects() {
139 >            return nIntegrableObjects_;
140 >        }
141  
142 <  double lrPot; // the potential energy from the long range calculations.
142 >        /** Returns the number of local cutoff groups */
143 >        unsigned int getNCutoffGroups() {
144 >            return nCutoffGroups_;
145 >        }
146  
147 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
148 <                      // column vectors of the x, y, and z box vectors.
149 <                      //   h1  h2  h3
150 <                      // [ Xx  Yx  Zx ]
151 <                      // [ Xy  Yy  Zy ]
152 <                      // [ Xz  Yz  Zz ]
153 <                      //  
154 <  double HmatInv[3][3];
147 >        /** Returns the total number of constraints in this SimInfo */
148 >        unsigned int getNConstraints() {
149 >            return nConstraints_;
150 >        }
151 >        
152 >        /**
153 >         * Returns the first molecule in this SimInfo and intialize the iterator.
154 >         * @return the first molecule, return NULL if there is not molecule in this SimInfo
155 >         * @param i the iterator of molecule array (user shouldn't change it)
156 >         */
157 >        Molecule* beginMolecule(MoleculeIterator& i);
158  
159 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
160 <  double boxVol;
161 <  int orthoRhombic;
162 <  
159 >        /**
160 >          * Returns the next avaliable Molecule based on the iterator.
161 >          * @return the next avaliable molecule, return NULL if reaching the end of the array
162 >          * @param i the iterator of molecule array
163 >          */
164 >        Molecule* nextMolecule(MoleculeIterator& i);
165  
166 <  double dielectric;      // the dielectric of the medium for reaction field
166 >        /** Returns the number of degrees of freedom */
167 >        int getNdf() {
168 >            return ndf_;
169 >        }
170  
171 <  
172 <  int usePBC; // whether we use periodic boundry conditions.
173 <  int useLJ;
174 <  int useSticky;
94 <  int useCharges;
95 <  int useDipoles;
96 <  int useReactionField;
97 <  int useGB;
98 <  int useEAM;
99 <  bool haveCutoffGroups;
100 <  bool useInitXSstate;
101 <  double orthoTolerance;
171 >        /** Returns the number of raw degrees of freedom */
172 >        int getNdfRaw() {
173 >            return ndfRaw_;
174 >        }
175  
176 <  double dt, run_time;           // the time step and total time
177 <  double sampleTime, statusTime; // the position and energy dump frequencies
178 <  double target_temp;            // the target temperature of the system
179 <  double thermalTime;            // the temp kick interval
107 <  double currentTime;            // Used primarily for correlation Functions
108 <  double resetTime;              // Use to reset the integrator periodically
109 <  short int have_target_temp;
176 >        /** Returns the number of translational degrees of freedom */
177 >        int getNdfTrans() {
178 >            return ndfTrans_;
179 >        }
180  
181 <  int n_mol;           // n_molecules;
182 <  Molecule* molecules; // the array of molecules
183 <  
184 <  int nComponents;           // the number of components in the system
185 <  int* componentsNmol;       // the number of molecules of each component
186 <  MoleculeStamp** compStamps;// the stamps matching the components
117 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
118 <  
119 <  
120 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
121 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
122 <  BaseIntegrator *the_integrator; // the integrator of the simulation
181 >        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
182 >        
183 >        /** Returns the total number of z-constraint molecules in the system */
184 >        int getNZconstraint() {
185 >            return nZconstraint_;
186 >        }
187  
188 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
189 <  Restraints* restraint;
190 <  bool has_minimizer;
188 >        /**
189 >         * Sets the number of z-constraint molecules in the system.
190 >         */
191 >        int setNZconstraint(int nZconstraint) {
192 >            nZconstraint_ = nZconstraint;
193 >        }
194 >        
195 >        /** Returns the snapshot manager. */
196 >        SnapshotManager* getSnapshotManager() {
197 >            return sman_;
198 >        }
199  
200 <  string finalName;  // the name of the eor file to be written
201 <  string sampleName; // the name of the dump file to be written
202 <  string statusName; // the name of the stat file to be written
200 >        /** Sets the snapshot manager. */
201 >        void setSnapshotManager(SnapshotManager* sman) {
202 >            sman_ = sman;
203 >        }
204  
205 <  int seed;                    //seed for random number generator
205 >        /** Returns the force field */
206 >        ForceField* getForceField() {
207 >            return forceField_;
208 >        }
209  
210 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
211 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
212 <  double thermIntLambda; // lambda for TI
137 <  double thermIntK;      // power of lambda for TI
138 <  double vRaw;           // unperturbed potential for TI
139 <  double vHarm;          // harmonic potential for TI
140 <  int i;                 // just an int
210 >        Globals* getGlobals() {
211 >            return globals_;
212 >        }
213  
214 <  vector<double> mfact;
215 <  vector<int> FglobalGroupMembership;
144 <  int ngroup;
145 <  int* globalGroupMembership;
214 >        /** Returns the velocity of center of mass of the whole system.*/
215 >        Vector3d getComVel();
216  
217 <  // refreshes the sim if things get changed (load balanceing, volume
218 <  // adjustment, etc.)
217 >        /** Returns the center of the mass of the whole system.*/
218 >        Vector3d getCom();
219  
220 <  void refreshSim( void );
221 <  
220 >        /** Returns the seed (used for random number generator) */
221 >        int getSeed() {
222 >            return seed_;
223 >        }
224  
225 <  // sets the internal function pointer to fortran.
225 >        /** Sets the seed*/
226 >        void setSeed(int seed) {
227 >            seed_ = seed;
228 >        }
229  
230 <  void setInternal( setFortranSim_TD fSetup,
231 <                    setFortranBox_TD fBox,
157 <                    notifyFortranCutOff_TD fCut){
158 <    setFsimulation = fSetup;
159 <    setFortranBoxSize = fBox;
160 <    notifyFortranCutOffs = fCut;
161 <  }
230 >        /** main driver function to interact with fortran during the initialization and molecule migration */
231 >        void update();
232  
233 <  int getNDF();
234 <  int getNDFraw();
235 <  int getNDFtranslational();
236 <  int getTotIntegrableObjects();
167 <  void setBox( double newBox[3] );
168 <  void setBoxM( double newBox[3][3] );
169 <  void getBoxM( double theBox[3][3] );
170 <  void scaleBox( double scale );
171 <  
172 <  void setDefaultRcut( double theRcut );
173 <  void setDefaultRcut( double theRcut, double theRsw );
174 <  void checkCutOffs( void );
233 >        /** Returns the local index manager */
234 >        LocalIndexManager* getLocalIndexManager() {
235 >            return &localIndexMan_;
236 >        }
237  
238 <  double getRcut( void )  { return rCut; }
239 <  double getRlist( void ) { return rList; }
240 <  double getRsw( void )   { return rSw; }
241 <  double getMaxCutoff( void ) { return maxCutoff; }
180 <  
181 <  void setTime( double theTime ) { currentTime = theTime; }
182 <  void incrTime( double the_dt ) { currentTime += the_dt; }
183 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
184 <  double getTime( void ) { return currentTime; }
238 >        int getMoleculeStampId(int globalIndex) {
239 >            //assert(globalIndex < molStampIds_.size())
240 >            return molStampIds_[globalIndex];
241 >        }
242  
243 <  void wrapVector( double thePos[3] );
243 >        /** Returns the molecule stamp */
244 >        MoleculeStamp* getMoleculeStamp(int id) {
245 >            return moleculeStamps_[id];
246 >        }
247 >        
248 >        /**
249 >         * Finds a molecule with a specified global index
250 >         * @return a pointer point to found molecule
251 >         * @param index
252 >         */
253 >        Molecule* getMoleculeByGlobalIndex(int index) {
254 >            std::map<int, Molecule*> i;
255 >            i = molecules_.find(index);
256  
257 <  SimState* getConfiguration( void ) { return myConfiguration; }
258 <  
190 <  void addProperty(GenericData* prop);
191 <  GenericData* getProperty(const string& propName);
192 <  //vector<GenericData*>& getProperties()  {return properties;}    
257 >            return i != molecules_.end() ? i->second : NULL;
258 >        }
259  
260 <  int getSeed(void) {  return seed; }
261 <  void setSeed(int theSeed) {  seed = theSeed;}
260 >        /** Calculate the maximum cutoff radius based on the atom types */
261 >        double calcMaxCutoffRadius();
262  
263 < private:
263 >        double getRcut() {
264 >            return rcut_;
265 >        }
266 >        
267 >        void setRcut(double rcut) {
268 >            rcut_ = rcut;
269 >        }
270  
271 <  SimState* myConfiguration;
271 >        double getRsw() {
272 >            return rsw_;
273 >        }
274 >        void setRsw(double rsw) {
275 >            rsw_ = rsw;
276 >        }
277 >        
278 >        std::string getFinalConfigFileName() {
279 >            return finalConfigFileName_;
280 >        }
281 >        
282 >        void setFinalConfigFileName(const std::string& fileName) {
283 >            finalConfigFileName_ = fileName;
284 >        }
285  
201  int boxIsInit, haveRcut, haveRsw;
286  
287 <  double rList, rCut; // variables for the neighborlist
288 <  double rSw;         // the switching radius
287 >        std::string getDumpFileName() {
288 >            return dumpFileName_;
289 >        }
290 >        
291 >        void setDumpFileName(const std::string& fileName) {
292 >            dumpFileName_ = fileName;
293 >        }
294  
295 <  double maxCutoff;
295 >        std::string getStatFileName() {
296 >            return statFileName_;
297 >        }
298 >        
299 >        void setStatFileName(const std::string& fileName) {
300 >            statFileName_ = fileName;
301 >        }
302  
303 <  double distXY;
304 <  double distYZ;
305 <  double distZX;
306 <  
307 <  void calcHmatInv( void );
308 <  void calcBoxL();
309 <  double calcMaxCutOff();
303 >        /**
304 >         * Returns the pointer of internal globalGroupMembership_ array. This array will be filled by SimCreator class
305 >         * @see #SimCreator::setGlobalIndex
306 >         */  
307 >        int* getGlobalGroupMembershipPointer() {
308 >            return globalGroupMembership_[0];
309 >        }
310  
311 <  // private function to initialize the fortran side of the simulation
312 <  setFortranSim_TD setFsimulation;
311 >        /**
312 >         * Returns the pointer of internal globalMolMembership_ array. This array will be filled by SimCreator class
313 >         * @see #SimCreator::setGlobalIndex
314 >         */        
315 >        int* getGlobalMolMembershipPointer() {
316 >            return globalMolMembership_[0];
317 >        }
318 >        
319 >        //below functions are just forward functions
320 >        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
321 >        //the other hand, has-a relation need composing.
322 >        /**
323 >         * Adds property into property map
324 >         * @param genData GenericData to be added into PropertyMap
325 >         */
326 >        void addProperty(GenericData* genData);
327  
328 <  setFortranBox_TD setFortranBoxSize;
329 <  
330 <  notifyFortranCutOff_TD notifyFortranCutOffs;
331 <  
332 <  //Addtional Properties of SimInfo
224 <  map<string, GenericData*> properties;
225 <  void getFortranGroupArrays(SimInfo* info,
226 <                             vector<int>& FglobalGroupMembership,
227 <                             vector<double>& mfact);
328 >        /**
329 >         * Removes property from PropertyMap by name
330 >         * @param propName the name of property to be removed
331 >         */
332 >        void removeProperty(const std::string& propName);
333  
334 +        /**
335 +         * clear all of the properties
336 +         */
337 +        void clearProperties();
338  
339 < };
339 >        /**
340 >         * Returns all names of properties
341 >         * @return all names of properties
342 >         */
343 >        std::vector<std::string> getPropertyNames();
344  
345 +        /**
346 +         * Returns all of the properties in PropertyMap
347 +         * @return all of the properties in PropertyMap
348 +         */      
349 +        std::vector<GenericData*> getProperties();
350  
351 +        /**
352 +         * Returns property
353 +         * @param propName name of property
354 +         * @return a pointer point to property with propName. If no property named propName
355 +         * exists, return NULL
356 +         */      
357 +        GenericData* getPropertyByName(const std::string& propName);
358 +                
359 +        friend std::ostream& operator <<(ostream& o, SimInfo& info);
360 +        
361 +    private:
362 +
363 +        
364 +        /** Returns the unique atom types of local processor in an array */
365 +        std::set<AtomType*> SimInfo::getUniqueAtomTypes();
366 +
367 +        /** fill up the simtype struct*/
368 +        void setupSimType();
369 +
370 +        /**
371 +         * Setup Fortran Simulation
372 +         * @see #setupFortranParallel
373 +         */
374 +        void setupFortranSim();
375 +
376 +        /** Calculates the number of degress of freedom in the whole system */
377 +        void calcNdf();
378 +        void calcNdfRaw();
379 +        void calcNdfTrans();
380 +
381 +        void addExcludePairs(Molecule* mol);
382 +        void removeExcludePairs(Molecule* mol);
383 +
384 +        /**
385 +         * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
386 +         * system.
387 +         */
388 +        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
389 +
390 +        std::map<int, Molecule*>  molecules_; /**< Molecule array */
391 +        
392 +        //degress of freedom
393 +        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
394 +        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
395 +        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
396 +        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
397 +        
398 +        //number of global objects
399 +        int nGlobalMols_;       /**< number of molecules in the system */
400 +        int nGlobalAtoms_;   /**< number of atoms in the system */
401 +        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
402 +
403 +        /**
404 +         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
405 +         * corresponding content is the global index of cutoff group this atom belong to.
406 +         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
407 +         */
408 +        std::vector<int> globalGroupMembership_;
409 +
410 +        /**
411 +         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
412 +         * corresponding content is the global index of molecule this atom belong to.
413 +         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
414 +         */
415 +        std::vector<int> globalMolMembership_;        
416 +
417 +        
418 +        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
419 +        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
420 +        
421 +        //number of local objects
422 +        int nAtoms_;                        /**< number of atoms in local processor */
423 +        int nBonds_;                        /**< number of bonds in local processor */
424 +        int nBends_;                        /**< number of bends in local processor */
425 +        int nTorsions_;                    /**< number of torsions in local processor */
426 +        int nRigidBodies_;              /**< number of rigid bodies in local processor */
427 +        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
428 +        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
429 +        int nConstraints_;              /**< number of constraints in local processors */
430 +
431 +        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
432 +        Exclude exclude_;
433 +        ForceField* forceField_;            
434 +        PropertyMap properties_;                  /**< Generic Property */
435 +        SnapshotManager* sman_;               /**< SnapshotManager */
436 +        Globals* globals_;
437 +        int seed_; /**< seed for random number generator */
438 +
439 +        /**
440 +         * The reason to have a local index manager is that when molecule is migrating to other processors,
441 +         * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
442 +         * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
443 +         * to make a efficient data moving plan.
444 +         */        
445 +        LocalIndexManager localIndexMan_;
446 +
447 +        //file names
448 +        std::string finalConfigFileName_;
449 +        std::string dumpFileName_;
450 +        std::string statFileName_;
451 +
452 +        double rcut_;       /**< cutoff radius*/
453 +        double rsw_;        /**< radius of switching function*/
454 +        
455 + #ifdef IS_MPI
456 +    //in Parallel version, we need MolToProc
457 +    public:
458 +                
459 +        /**
460 +         * Finds the processor where a molecule resides
461 +         * @return the id of the processor which contains the molecule
462 +         * @param globalIndex global Index of the molecule
463 +         */
464 +        int getMolToProc(int globalIndex) {
465 +            //assert(globalIndex < molToProcMap_.size());
466 +            return molToProcMap_[globalIndex];
467 +        }
468 +
469 +        /**
470 +         * Returns the pointer of internal molToProcMap array. This array will be filled by SimCreator class
471 +         * @see #SimCreator::divideMolecules
472 +         */
473 +        int* getMolToProcMapPointer() {
474 +            return &molToProcMap_[0];
475 +        }
476 +        
477 +    private:
478 +
479 +        void setupFortranParallel();
480 +        
481 +        /**
482 +         * The size of molToProcMap_ is equal to total number of molecules in the system.
483 +         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
484 +         * once.
485 +         */        
486 +        std::vector<int> molToProcMap_;
487   #endif
488 +
489 + };
490 +
491 + } //namespace oopse
492 + #endif //BRAINS_SIMMODEL_HPP

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines