ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/OOPSE-3.0/src/brains/SimInfo.hpp (file contents), Revision 1490 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/new_design/OOPSE-3.0/src/brains/SimInfo.hpp (file contents), Revision 1738 by tim, Sat Nov 13 05:08:12 2004 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 > *
4 > * Contact: oopse@oopse.org
5 > *
6 > * This program is free software; you can redistribute it and/or
7 > * modify it under the terms of the GNU Lesser General Public License
8 > * as published by the Free Software Foundation; either version 2.1
9 > * of the License, or (at your option) any later version.
10 > * All we ask is that proper credit is given for our work, which includes
11 > * - but is not limited to - adding the above copyright notice to the beginning
12 > * of your source code files, and to any copyright notice that you may distribute
13 > * with programs based on this work.
14 > *
15 > * This program is distributed in the hope that it will be useful,
16 > * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 > * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 > * GNU Lesser General Public License for more details.
19 > *
20 > * You should have received a copy of the GNU Lesser General Public License
21 > * along with this program; if not, write to the Free Software
22 > * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 > *
24 > */
25  
26 < #include <map>
27 < #include <string>
28 < #include <vector>
26 > /**
27 > * @file SimInfo.hpp
28 > * @author    tlin
29 > * @date  11/02/2004
30 > * @version 1.0
31 > */
32  
33 < #include "Atom.hpp"
34 < #include "RigidBody.hpp"
10 < #include "Molecule.hpp"
11 < #include "Exclude.hpp"
12 < #include "SkipList.hpp"
13 < #include "AbstractClasses.hpp"
14 < #include "MakeStamps.hpp"
15 < #include "SimState.hpp"
16 < #include "Restraints.hpp"
33 > #ifndef BRAINS_SIMMODEL_HPP
34 > #define BRAINS_SIMMODEL_HPP
35  
36 < #define __C
37 < #include "fSimulation.h"
38 < #include "fortranWrapDefines.hpp"
21 < #include "GenericData.hpp"
36 > #include <iostream>
37 > #include <vector>
38 > #include <utility>
39  
40 + #include "brains/fSimulation.h"
41 + #include "primitives/Molecule.hpp"
42 + #include "types/MoleculeStamp.hpp"
43 + #include "utils/PropertyMap.hpp"
44 + #include "io/Globals.hpp"
45  
46 < //#include "Minimizer.hpp"
25 < //#include "OOPSEMinimizer.hpp"
46 > namespace oopse{
47  
48 + /**
49 + * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
50 + * @brief As one of the heavy weight class of OOPSE, SimInfo
51 + * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
52 + * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
53 + * cutoff groups, constrains).
54 + * Another major change is the index. No matter single version or parallel version,  atoms and
55 + * rigid bodies have both global index and local index. Local index is not important to molecule as well as
56 + * cutoff group.
57 + */
58 + class SimInfo {
59 +    public:
60 +        typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
61  
62 < double roundMe( double x );
63 < class OOPSEMinimizer;
64 < class SimInfo{
62 >        /**
63 >         * Constructor of SimInfo
64 >         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
65 >         * second element is the total number of molecules with the same molecule stamp in the system
66 >         * @param ff pointer of a concrete ForceField instance
67 >         * @param globals
68 >         * @note
69 >         */
70 >        SimInfo(const std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* globals);
71 >        virtual ~SimInfo();
72  
73 < public:
73 >        /**
74 >         * Adds a molecule
75 >         * @return return true if adding successfully, return false if the molecule is already in SimInfo
76 >         * @param mol molecule to be added
77 >         */
78 >        bool addMolecule(Molecule* mol);
79  
80 <  SimInfo();
81 <  ~SimInfo();
80 >        /**
81 >         * Removes a molecule from SimInfo
82 >         * @return true if removing successfully, return false if molecule is not in this SimInfo
83 >         */
84 >        bool removeMolecule(Molecule* mol);
85  
86 <  int n_atoms; // the number of atoms
87 <  Atom **atoms; // the array of atom objects
86 >        /** Returns the total number of molecules in the system. */
87 >        int getNGlobalMolecules() {
88 >            return nGlobalMols_;
89 >        }
90  
91 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
92 <  vector<StuntDouble*> integrableObjects;
93 <  
94 <  double tau[9]; // the stress tensor
91 >        /** Returns the total number of atoms in the system. */
92 >        int getNGlobalAtoms() {
93 >            return nGlobalAtoms_;
94 >        }
95  
96 <  int n_bonds;    // number of bends
97 <  int n_bends;    // number of bends
98 <  int n_torsions; // number of torsions
99 <  int n_oriented; // number of of atoms with orientation
100 <  int ndf;        // number of actual degrees of freedom
101 <  int ndfRaw;     // number of settable degrees of freedom
102 <  int ndfTrans;   // number of translational degrees of freedom
103 <  int nZconstraints; // the number of zConstraints
96 >        /** Returns the total number of cutoff groups in the system. */
97 >        int getNGlobalCutoffGroups() {
98 >            return nGlobalCutoffGroups_;
99 >        }
100 >        
101 >        /**
102 >         * Returns the number of local molecules.
103 >         * @return the number of local molecules
104 >         */
105 >        int getNMolecules() {
106 >            return molecules_.size();
107 >        }
108  
109 <  int setTemp;   // boolean to set the temperature at each sampleTime
110 <  int resetIntegrator; // boolean to reset the integrator
109 >        /** Returns the number of local atoms */
110 >        unsigned int getNAtoms() {
111 >            return nAtoms_;
112 >        }
113  
114 <  int n_dipoles; // number of dipoles
114 >        /** Returns the number of local bonds */        
115 >        unsigned int getNBonds(){
116 >            return nBonds_;
117 >        }
118  
119 <  int n_exclude;
120 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
121 <  int nGlobalExcludes;
122 <  int* globalExcludes; // same as above, but these guys participate in
63 <                       // no long range forces.
119 >        /** Returns the number of local bends */        
120 >        unsigned int getNBends() {
121 >            return nBends_;
122 >        }
123  
124 <  int* identArray;     // array of unique identifiers for the atoms
125 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
124 >        /** Returns the number of local torsions */        
125 >        unsigned int getNTorsions() {
126 >            return nTorsions_;
127 >        }
128  
129 <  int n_constraints; // the number of constraints on the system
129 >        /** Returns the number of local rigid bodies */        
130 >        unsigned int getNRigidBodies() {
131 >            return nRigidBodies_;
132 >        }
133  
134 <  int n_SRI;   // the number of short range interactions
134 >        /** Returns the number of local integrable objects */
135 >        unsigned int getNIntegrableObjects() {
136 >            return nIntegrableObjects_;
137 >        }
138  
139 <  double lrPot; // the potential energy from the long range calculations.
139 >        /** Returns the number of local cutoff groups */
140 >        unsigned int getNCutoffGroups() {
141 >            return nCutoffGroups_;
142 >        }
143  
144 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
145 <                      // column vectors of the x, y, and z box vectors.
146 <                      //   h1  h2  h3
147 <                      // [ Xx  Yx  Zx ]
148 <                      // [ Xy  Yy  Zy ]
149 <                      // [ Xz  Yz  Zz ]
150 <                      //  
151 <  double HmatInv[3][3];
144 >        /** Returns the total number of constraints in this SimInfo */
145 >        unsigned int getNConstraints() {
146 >            return nConstraints_;
147 >        }
148 >        
149 >        /**
150 >         * Returns the first molecule in this SimInfo and intialize the iterator.
151 >         * @return the first molecule, return NULL if there is not molecule in this SimInfo
152 >         * @param i the iterator of molecule array (user shouldn't change it)
153 >         */
154 >        Molecule* beginMolecule(MoleculeIterator& i);
155  
156 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
157 <  double boxVol;
158 <  int orthoRhombic;
159 <  
156 >        /**
157 >          * Returns the next avaliable Molecule based on the iterator.
158 >          * @return the next avaliable molecule, return NULL if reaching the end of the array
159 >          * @param i the iterator of molecule array
160 >          */
161 >        Molecule* nextMolecule(MoleculeIterator& i);
162  
163 <  double dielectric;      // the dielectric of the medium for reaction field
163 >        /** Returns the number of degrees of freedom */
164 >        int getNdf() {
165 >            return ndf_;
166 >        }
167  
168 <  
169 <  int usePBC; // whether we use periodic boundry conditions.
170 <  int useLJ;
171 <  int useSticky;
94 <  int useCharges;
95 <  int useDipoles;
96 <  int useReactionField;
97 <  int useGB;
98 <  int useEAM;
99 <  bool haveCutoffGroups;
100 <  bool useInitXSstate;
101 <  double orthoTolerance;
168 >        /** Returns the number of raw degrees of freedom */
169 >        int getNdfRaw() {
170 >            return ndfRaw_;
171 >        }
172  
173 <  double dt, run_time;           // the time step and total time
174 <  double sampleTime, statusTime; // the position and energy dump frequencies
175 <  double target_temp;            // the target temperature of the system
176 <  double thermalTime;            // the temp kick interval
107 <  double currentTime;            // Used primarily for correlation Functions
108 <  double resetTime;              // Use to reset the integrator periodically
109 <  short int have_target_temp;
173 >        /** Returns the number of translational degrees of freedom */
174 >        int getNdfTrans() {
175 >            return ndfTrans_;
176 >        }
177  
178 <  int n_mol;           // n_molecules;
179 <  Molecule* molecules; // the array of molecules
180 <  
181 <  int nComponents;           // the number of components in the system
182 <  int* componentsNmol;       // the number of molecules of each component
183 <  MoleculeStamp** compStamps;// the stamps matching the components
117 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
118 <  
119 <  
120 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
121 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
122 <  BaseIntegrator *the_integrator; // the integrator of the simulation
178 >        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
179 >        
180 >        /** Returns the total number of z-constraint molecules in the system */
181 >        int getNZconstraint() {
182 >            return nZconstraint_;
183 >        }
184  
185 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
186 <  Restraints* restraint;
187 <  bool has_minimizer;
185 >        /**
186 >         * Sets the number of z-constraint molecules in the system.
187 >         */
188 >        int setNZconstraint(int nZconstraint) {
189 >            nZconstraint_ = nZconstraint;
190 >        }
191 >        
192 >        /** Returns the snapshot manager. */
193 >        SnapshotManager* getSnapshotManager() {
194 >            return sman_;
195 >        }
196  
197 <  string finalName;  // the name of the eor file to be written
198 <  string sampleName; // the name of the dump file to be written
199 <  string statusName; // the name of the stat file to be written
197 >        /** Sets the snapshot manager. */
198 >        void setSnapshotManager(SnapshotManager* sman) {
199 >            sman_ = sman;
200 >        }
201  
202 <  int seed;                    //seed for random number generator
202 >        /** Returns the force field */
203 >        ForceField* getForceField() {
204 >            return forceField_;
205 >        }
206  
207 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
208 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
209 <  double thermIntLambda; // lambda for TI
137 <  double thermIntK;      // power of lambda for TI
138 <  double vRaw;           // unperturbed potential for TI
139 <  double vHarm;          // harmonic potential for TI
140 <  int i;                 // just an int
207 >        Globals* getGlobals() {
208 >            return globals_;
209 >        }
210  
211 <  vector<double> mfact;
212 <  vector<int> FglobalGroupMembership;
144 <  int ngroup;
145 <  int* globalGroupMembership;
211 >        /** Returns the velocity of center of mass of the whole system.*/
212 >        Vector3d getComVel();
213  
214 <  // refreshes the sim if things get changed (load balanceing, volume
215 <  // adjustment, etc.)
214 >        /** Returns the center of the mass of the whole system.*/
215 >        Vector3d getCom();
216  
217 <  void refreshSim( void );
218 <  
217 >        /** Returns the seed (used for random number generator) */
218 >        int getSeed() {
219 >            return seed_;
220 >        }
221  
222 <  // sets the internal function pointer to fortran.
222 >        /** Sets the seed*/
223 >        void setSeed(int seed) {
224 >            seed_ = seed;
225 >        }
226  
227 <  void setInternal( setFortranSim_TD fSetup,
228 <                    setFortranBox_TD fBox,
157 <                    notifyFortranCutOff_TD fCut){
158 <    setFsimulation = fSetup;
159 <    setFortranBoxSize = fBox;
160 <    notifyFortranCutOffs = fCut;
161 <  }
227 >        /** main driver function to interact with fortran during the initialization and molecule migration */
228 >        void update();
229  
230 <  int getNDF();
231 <  int getNDFraw();
232 <  int getNDFtranslational();
233 <  int getTotIntegrableObjects();
167 <  void setBox( double newBox[3] );
168 <  void setBoxM( double newBox[3][3] );
169 <  void getBoxM( double theBox[3][3] );
170 <  void scaleBox( double scale );
171 <  
172 <  void setDefaultRcut( double theRcut );
173 <  void setDefaultRcut( double theRcut, double theRsw );
174 <  void checkCutOffs( void );
230 >        /** Returns the local index manager */
231 >        LocalIndexManager* getLocalIndexManager() {
232 >            return &localIndexMan_;
233 >        }
234  
235 <  double getRcut( void )  { return rCut; }
236 <  double getRlist( void ) { return rList; }
237 <  double getRsw( void )   { return rSw; }
238 <  double getMaxCutoff( void ) { return maxCutoff; }
180 <  
181 <  void setTime( double theTime ) { currentTime = theTime; }
182 <  void incrTime( double the_dt ) { currentTime += the_dt; }
183 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
184 <  double getTime( void ) { return currentTime; }
235 >        int getMoleculeStampId(int globalIndex) {
236 >            //assert(globalIndex < molStampIds_.size())
237 >            return molStampIds_[globalIndex];
238 >        }
239  
240 <  void wrapVector( double thePos[3] );
240 >        /** Returns the molecule stamp */
241 >        MoleculeStamp* getMoleculeStamp(int id) {
242 >            return moleculeStamps_[id];
243 >        }
244 >        
245 >        /**
246 >         * Finds a molecule with a specified global index
247 >         * @return a pointer point to found molecule
248 >         * @param index
249 >         */
250 >        Molecule* getMoleculeByGlobalIndex(int index) {
251 >            std::map<int, Molecule*> i;
252 >            i = molecules_.find(index);
253  
254 <  SimState* getConfiguration( void ) { return myConfiguration; }
255 <  
190 <  void addProperty(GenericData* prop);
191 <  GenericData* getProperty(const string& propName);
192 <  //vector<GenericData*>& getProperties()  {return properties;}    
254 >            return i != molecules_.end() ? i->second : NULL;
255 >        }
256  
257 <  int getSeed(void) {  return seed; }
258 <  void setSeed(int theSeed) {  seed = theSeed;}
257 >        /** Calculate the maximum cutoff radius based on the atom types */
258 >        double calcMaxCutoffRadius();
259  
260 < private:
260 >        double getRcut() {
261 >            return rcut_;
262 >        }
263  
264 <  SimState* myConfiguration;
264 >        double getRsw() {
265 >            return rsw_;
266 >        }
267 >        
268 >        std::string getFinalConfigFileName() {
269 >            return finalConfigFileName_;
270 >        }
271 >        
272 >        void setFinalConfigFileName(const std::string& fileName) {
273 >            finalConfigFileName_ = fileName;
274 >        }
275  
276 <  int boxIsInit, haveRcut, haveRsw;
276 >        std::string getDumpFileName() {
277 >            return dumpFileName_;
278 >        }
279 >        
280 >        void setDumpFileName(const std::string& fileName) {
281 >            dumpFileName_ = fileName;
282 >        }
283  
284 <  double rList, rCut; // variables for the neighborlist
285 <  double rSw;         // the switching radius
284 >        std::string getStatFileName() {
285 >            return statFileName_;
286 >        }
287 >        
288 >        void setStatFileName(const std::string& fileName) {
289 >            statFileName_ = fileName;
290 >        }
291  
292 <  double maxCutoff;
292 >        /**
293 >         * Returns the pointer of internal globalGroupMembership_ array. This array will be filled by SimCreator class
294 >         * @see #SimCreator::setGlobalIndex
295 >         */  
296 >        int* getGlobalGroupMembershipPointer() {
297 >            return globalGroupMembership_[0];
298 >        }
299  
300 <  double distXY;
301 <  double distYZ;
302 <  double distZX;
303 <  
304 <  void calcHmatInv( void );
305 <  void calcBoxL();
306 <  double calcMaxCutOff();
300 >        /**
301 >         * Returns the pointer of internal globalMolMembership_ array. This array will be filled by SimCreator class
302 >         * @see #SimCreator::setGlobalIndex
303 >         */        
304 >        int* getGlobalMolMembershipPointer() {
305 >            return globalMolMembership_[0];
306 >        }
307  
216  // private function to initialize the fortran side of the simulation
217  setFortranSim_TD setFsimulation;
308  
309 <  setFortranBox_TD setFortranBoxSize;
310 <  
311 <  notifyFortranCutOff_TD notifyFortranCutOffs;
312 <  
313 <  //Addtional Properties of SimInfo
314 <  map<string, GenericData*> properties;
315 <  void getFortranGroupArrays(SimInfo* info,
316 <                             vector<int>& FglobalGroupMembership,
317 <                             vector<double>& mfact);
309 >        bool isFortranInitialized() {
310 >            return fortranInitialized_;
311 >        }
312 >        
313 >        //below functions are just forward functions
314 >        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
315 >        //the other hand, has-a relation need composing.
316 >        /**
317 >         * Adds property into property map
318 >         * @param genData GenericData to be added into PropertyMap
319 >         */
320 >        void addProperty(GenericData* genData);
321  
322 +        /**
323 +         * Removes property from PropertyMap by name
324 +         * @param propName the name of property to be removed
325 +         */
326 +        void removeProperty(const std::string& propName);
327  
328 < };
328 >        /**
329 >         * clear all of the properties
330 >         */
331 >        void clearProperties();
332  
333 +        /**
334 +         * Returns all names of properties
335 +         * @return all names of properties
336 +         */
337 +        std::vector<std::string> getPropertyNames();
338  
339 +        /**
340 +         * Returns all of the properties in PropertyMap
341 +         * @return all of the properties in PropertyMap
342 +         */      
343 +        std::vector<GenericData*> getProperties();
344 +
345 +        /**
346 +         * Returns property
347 +         * @param propName name of property
348 +         * @return a pointer point to property with propName. If no property named propName
349 +         * exists, return NULL
350 +         */      
351 +        GenericData* getPropertyByName(const std::string& propName);
352 +                
353 +        friend std::ostream& operator <<(ostream& o, SimInfo& info);
354 +        
355 +    private:
356 +
357 +        
358 +        /** Returns the unique atom types of local processor in an array */
359 +        std::set<AtomType*> SimInfo::getUniqueAtomTypes();
360 +
361 +        /** fill up the simtype struct*/
362 +        void setupSimType();
363 +
364 +        /**
365 +         * Setup Fortran Simulation
366 +         * @see #setupFortranParallel
367 +         */
368 +        void setupFortranSim();
369 +
370 +        /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
371 +        void setupCutoff();
372 +
373 +        /** Calculates the number of degress of freedom in the whole system */
374 +        void calcNdf();
375 +        void calcNdfRaw();
376 +        void calcNdfTrans();
377 +
378 +        void addExcludePairs(Molecule* mol);
379 +        void removeExcludePairs(Molecule* mol);
380 +
381 +        /**
382 +         * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
383 +         * system.
384 +         */
385 +        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
386 +
387 +        std::map<int, Molecule*>  molecules_; /**< Molecule array */
388 +        
389 +        //degress of freedom
390 +        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
391 +        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
392 +        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
393 +        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
394 +        
395 +        //number of global objects
396 +        int nGlobalMols_;       /**< number of molecules in the system */
397 +        int nGlobalAtoms_;   /**< number of atoms in the system */
398 +        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
399 +
400 +        /**
401 +         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
402 +         * corresponding content is the global index of cutoff group this atom belong to.
403 +         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
404 +         */
405 +        std::vector<int> globalGroupMembership_;
406 +
407 +        /**
408 +         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
409 +         * corresponding content is the global index of molecule this atom belong to.
410 +         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
411 +         */
412 +        std::vector<int> globalMolMembership_;        
413 +
414 +        
415 +        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
416 +        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
417 +        
418 +        //number of local objects
419 +        int nAtoms_;                        /**< number of atoms in local processor */
420 +        int nBonds_;                        /**< number of bonds in local processor */
421 +        int nBends_;                        /**< number of bends in local processor */
422 +        int nTorsions_;                    /**< number of torsions in local processor */
423 +        int nRigidBodies_;              /**< number of rigid bodies in local processor */
424 +        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
425 +        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
426 +        int nConstraints_;              /**< number of constraints in local processors */
427 +
428 +        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
429 +        Exclude exclude_;
430 +        ForceField* forceField_;            
431 +        PropertyMap properties_;                  /**< Generic Property */
432 +        SnapshotManager* sman_;               /**< SnapshotManager */
433 +        Globals* globals_;
434 +        int seed_; /**< seed for random number generator */
435 +
436 +        /**
437 +         * The reason to have a local index manager is that when molecule is migrating to other processors,
438 +         * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
439 +         * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
440 +         * to make a efficient data moving plan.
441 +         */        
442 +        LocalIndexManager localIndexMan_;
443 +
444 +        //file names
445 +        std::string finalConfigFileName_;
446 +        std::string dumpFileName_;
447 +        std::string statFileName_;
448 +
449 +        double rcut_;       /**< cutoff radius*/
450 +        double rsw_;        /**< radius of switching function*/
451 +
452 +        bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
453 +        
454 + #ifdef IS_MPI
455 +    //in Parallel version, we need MolToProc
456 +    public:
457 +                
458 +        /**
459 +         * Finds the processor where a molecule resides
460 +         * @return the id of the processor which contains the molecule
461 +         * @param globalIndex global Index of the molecule
462 +         */
463 +        int getMolToProc(int globalIndex) {
464 +            //assert(globalIndex < molToProcMap_.size());
465 +            return molToProcMap_[globalIndex];
466 +        }
467 +
468 +        /**
469 +         * Returns the pointer of internal molToProcMap array. This array will be filled by SimCreator class
470 +         * @see #SimCreator::divideMolecules
471 +         */
472 +        int* getMolToProcMapPointer() {
473 +            return &molToProcMap_[0];
474 +        }
475 +        
476 +    private:
477 +
478 +        void setupFortranParallel();
479 +        
480 +        /**
481 +         * The size of molToProcMap_ is equal to total number of molecules in the system.
482 +         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
483 +         * once.
484 +         */        
485 +        std::vector<int> molToProcMap_;
486   #endif
487 +
488 + };
489 +
490 + } //namespace oopse
491 + #endif //BRAINS_SIMMODEL_HPP

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines