ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/OOPSE-3.0/src/brains/SimInfo.hpp (file contents), Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/new_design/OOPSE-3.0/src/brains/SimInfo.hpp (file contents), Revision 1733 by tim, Fri Nov 12 06:19:04 2004 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 > *
4 > * Contact: oopse@oopse.org
5 > *
6 > * This program is free software; you can redistribute it and/or
7 > * modify it under the terms of the GNU Lesser General Public License
8 > * as published by the Free Software Foundation; either version 2.1
9 > * of the License, or (at your option) any later version.
10 > * All we ask is that proper credit is given for our work, which includes
11 > * - but is not limited to - adding the above copyright notice to the beginning
12 > * of your source code files, and to any copyright notice that you may distribute
13 > * with programs based on this work.
14 > *
15 > * This program is distributed in the hope that it will be useful,
16 > * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 > * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 > * GNU Lesser General Public License for more details.
19 > *
20 > * You should have received a copy of the GNU Lesser General Public License
21 > * along with this program; if not, write to the Free Software
22 > * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 > *
24 > */
25  
26 < #include <map>
27 < #include <string>
26 > /**
27 > * @file SimInfo.hpp
28 > * @author    tlin
29 > * @date  11/02/2004
30 > * @version 1.0
31 > */
32 >
33 > #ifndef BRAINS_SIMMODEL_HPP
34 > #define BRAINS_SIMMODEL_HPP
35 >
36 > #include <iostream>
37   #include <vector>
38 + #include <utility>
39  
40 < #include "primitives/Atom.hpp"
9 < #include "primitives/RigidBody.hpp"
40 > #include "brains/fSimulation.h"
41   #include "primitives/Molecule.hpp"
42 < #include "brains/Exclude.hpp"
43 < #include "brains/SkipList.hpp"
44 < #include "primitives/AbstractClasses.hpp"
14 < #include "types/MakeStamps.hpp"
15 < #include "brains/SimState.hpp"
16 < #include "restraints/Restraints.hpp"
42 > #include "types/MoleculeStamp.hpp"
43 > #include "utils/PropertyMap.hpp"
44 > #include "io/Globals.hpp"
45  
46 < #define __C
19 < #include "brains/fSimulation.h"
20 < #include "utils/GenericData.hpp"
46 > namespace oopse{
47  
48 + /**
49 + * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
50 + * @brief
51 + */
52 + class SimInfo {
53 +    public:
54 +        typedef MoleculeIterator MoleculeIterator;
55  
56 < //#include "Minimizer.hpp"
57 < //#include "minimizers/OOPSEMinimizer.hpp"
56 >        /**
57 >         * Constructor of SimInfo
58 >         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
59 >         * second element is the total number of molecules with the same molecule stamp in the system
60 >         * @param ff pointer of a concrete ForceField instance
61 >         * @param globals
62 >         * @note
63 >         * <p>
64 >         * The major change of SimInfo
65 >         * </p>
66 >         */
67 >        SimInfo(const std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* globals);
68 >        virtual ~SimInfo();
69  
70 +        /**
71 +         * Adds a molecule
72 +         * @return return true if adding successfully, return false if the molecule is already in SimInfo
73 +         * @param mol molecule to be added
74 +         */
75 +        bool addMolecule(Molecule* mol);
76  
77 < double roundMe( double x );
78 < class OOPSEMinimizer;
79 < class SimInfo{
77 >        /**
78 >         * Removes a molecule from SimInfo
79 >         * @return true if removing successfully, return false if molecule is not in this SimInfo
80 >         */
81 >        bool removeMolecule(Molecule* mol);
82  
83 < public:
83 >        /** Returns the total number of molecules in the system. */
84 >        int getNGlobalMolecules() {
85 >            return nGlobalMols_;
86 >        }
87  
88 <  SimInfo();
89 <  ~SimInfo();
88 >        /** Returns the total number of atoms in the system. */
89 >        int getNGlobalAtoms() {
90 >            return nGlobalAtoms_;
91 >        }
92  
93 <  int n_atoms; // the number of atoms
94 <  Atom **atoms; // the array of atom objects
93 >        /** Returns the total number of cutoff groups in the system. */
94 >        int getNGlobalCutoffGroups() {
95 >            return nGlobalCutoffGroups_;
96 >        }
97 >        
98 >        /**
99 >         * Returns the number of local molecules.
100 >         * @return the number of local molecules
101 >         */
102 >        int getNMolecules() {
103 >            return molecules_.size();
104 >        }
105  
106 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
107 <  vector<StuntDouble*> integrableObjects;
108 <  
109 <  double tau[9]; // the stress tensor
106 >        /** Returns the number of local atoms */
107 >        unsigned int getNAtoms() {
108 >            return nAtoms_;
109 >        }
110  
111 <  int n_bonds;    // number of bends
112 <  int n_bends;    // number of bends
113 <  int n_torsions; // number of torsions
114 <  int n_oriented; // number of of atoms with orientation
48 <  int ndf;        // number of actual degrees of freedom
49 <  int ndfRaw;     // number of settable degrees of freedom
50 <  int ndfTrans;   // number of translational degrees of freedom
51 <  int nZconstraints; // the number of zConstraints
111 >        /** Returns the number of local bonds */        
112 >        unsigned int getNBonds(){
113 >            return nBonds_;
114 >        }
115  
116 <  int setTemp;   // boolean to set the temperature at each sampleTime
117 <  int resetIntegrator; // boolean to reset the integrator
116 >        /** Returns the number of local bends */        
117 >        unsigned int getNBends() {
118 >            return nBends_;
119 >        }
120  
121 <  int n_dipoles; // number of dipoles
121 >        /** Returns the number of local torsions */        
122 >        unsigned int getNTorsions() {
123 >            return nTorsions_;
124 >        }
125  
126 <  int n_exclude;
127 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
128 <  int nGlobalExcludes;
129 <  int* globalExcludes; // same as above, but these guys participate in
62 <                       // no long range forces.
126 >        /** Returns the number of local rigid bodies */        
127 >        unsigned int getNRigidBodies() {
128 >            return nRigidBodies_;
129 >        }
130  
131 <  int* identArray;     // array of unique identifiers for the atoms
132 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
131 >        /** Returns the number of local integrable objects */
132 >        unsigned int getNIntegrableObjects() {
133 >            return nIntegrableObjects_;
134 >        }
135  
136 <  int n_constraints; // the number of constraints on the system
136 >        /** Returns the number of local cutoff groups */
137 >        unsigned int getNCutoffGroups() {
138 >            return nCutoffGroups_;
139 >        }
140  
141 <  int n_SRI;   // the number of short range interactions
141 >        /** Returns the total number of constraints in this SimInfo */
142 >        unsigned int getNConstraints() {
143 >            return nConstraints_;
144 >        }
145 >        
146 >        /**
147 >         * Returns the first molecule in this SimInfo and intialize the iterator.
148 >         * @return the first molecule, return NULL if there is not molecule in this SimInfo
149 >         * @param i the iterator of molecule array (user shouldn't change it)
150 >         */
151 >        Molecule* beginMolecule(MoleculeIterator& i);
152  
153 <  double lrPot; // the potential energy from the long range calculations.
153 >        /**
154 >          * Returns the next avaliable Molecule based on the iterator.
155 >          * @return the next avaliable molecule, return NULL if reaching the end of the array
156 >          * @param i the iterator of molecule array
157 >          */
158 >        Molecule* nextMolecule(MoleculeIterator& i);
159  
160 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
161 <                      // column vectors of the x, y, and z box vectors.
162 <                      //   h1  h2  h3
163 <                      // [ Xx  Yx  Zx ]
77 <                      // [ Xy  Yy  Zy ]
78 <                      // [ Xz  Yz  Zz ]
79 <                      //  
80 <  double HmatInv[3][3];
160 >        /** Returns the number of degrees of freedom */
161 >        int getNdf() {
162 >            return ndf_;
163 >        }
164  
165 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
166 <  double boxVol;
167 <  int orthoRhombic;
168 <  
165 >        /** Returns the number of raw degrees of freedom */
166 >        int getNdfRaw() {
167 >            return ndfRaw_;
168 >        }
169  
170 <  double dielectric;      // the dielectric of the medium for reaction field
170 >        /** Returns the number of translational degrees of freedom */
171 >        int getNdfTrans() {
172 >            return ndfTrans_;
173 >        }
174  
175 <  
176 <  int usePBC; // whether we use periodic boundry conditions.
177 <  int useLJ;
178 <  int useSticky;
179 <  int useCharges;
180 <  int useDipoles;
95 <  int useReactionField;
96 <  int useGB;
97 <  int useEAM;
98 <  bool haveCutoffGroups;
99 <  bool useInitXSstate;
100 <  double orthoTolerance;
175 >        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
176 >        
177 >        /** Returns the total number of z-constraint molecules in the system */
178 >        int getNZconstraint() {
179 >            return nZconstraint_;
180 >        }
181  
182 <  double dt, run_time;           // the time step and total time
183 <  double sampleTime, statusTime; // the position and energy dump frequencies
184 <  double target_temp;            // the target temperature of the system
185 <  double thermalTime;            // the temp kick interval
186 <  double currentTime;            // Used primarily for correlation Functions
187 <  double resetTime;              // Use to reset the integrator periodically
188 <  short int have_target_temp;
182 >        /**
183 >         * Sets the number of z-constraint molecules in the system.
184 >         */
185 >        int setNZconstraint(int nZconstraint) {
186 >            nZconstraint_ = nZconstraint;
187 >        }
188 >        
189 >        /** Returns the snapshot manager. */
190 >        SnapshotManager* getSnapshotManager() {
191 >            return sman_;
192 >        }
193  
194 <  int n_mol;           // n_molecules;
195 <  Molecule* molecules; // the array of molecules
196 <  
197 <  int nComponents;           // the number of components in the system
114 <  int* componentsNmol;       // the number of molecules of each component
115 <  MoleculeStamp** compStamps;// the stamps matching the components
116 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
117 <  
118 <  
119 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
120 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
121 <  BaseIntegrator *the_integrator; // the integrator of the simulation
194 >        /** Sets the snapshot manager. */
195 >        void setSnapshotManager(SnapshotManager* sman) {
196 >            sman_ = sman;
197 >        }
198  
199 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
200 <  Restraints* restraint;
201 <  bool has_minimizer;
199 >        /** Returns the force field */
200 >        ForceField* getForceField() {
201 >            return forceField_;
202 >        }
203  
204 <  string finalName;  // the name of the eor file to be written
205 <  string sampleName; // the name of the dump file to be written
206 <  string statusName; // the name of the stat file to be written
204 >        Globals* getGlobals() {
205 >            return globals_;
206 >        }
207  
208 <  int seed;                    //seed for random number generator
208 >        /** Returns the velocity of center of mass of the whole system.*/
209 >        Vector3d getComVel();
210  
211 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
212 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
135 <  double thermIntLambda; // lambda for TI
136 <  double thermIntK;      // power of lambda for TI
137 <  double vRaw;           // unperturbed potential for TI
138 <  double vHarm;          // harmonic potential for TI
139 <  int i;                 // just an int
211 >        /** Returns the center of the mass of the whole system.*/
212 >        Vector3d getCom();
213  
214 <  vector<double> mfact;
215 <  vector<int> FglobalGroupMembership;
216 <  int ngroup;
217 <  int* globalGroupMembership;
214 >        /** Returns the seed (used for random number generator) */
215 >        int getSeed() {
216 >            return seed_;
217 >        }
218  
219 <  // refreshes the sim if things get changed (load balanceing, volume
220 <  // adjustment, etc.)
219 >        /** Sets the seed*/
220 >        void setSeed(int seed) {
221 >            seed_ = seed;
222 >        }
223  
224 <  void refreshSim( void );
225 <  
224 >        /** main driver function to interact with fortran during the initialization and molecule migration */
225 >        void update();
226  
227 <  // sets the internal function pointer to fortran.
227 >        /** Returns the local index manager */
228 >        LocalIndexManager* getLocalIndexManager() {
229 >            return localIndexMan_;
230 >        }
231  
232 +        int getMoleculeStampId(int globalIndex) {
233 +            //assert(globalIndex < molStampIds_.size())
234 +            return molStampIds_[globalIndex];
235 +        }
236  
237 <  int getNDF();
238 <  int getNDFraw();
239 <  int getNDFtranslational();
240 <  int getTotIntegrableObjects();
241 <  void setBox( double newBox[3] );
242 <  void setBoxM( double newBox[3][3] );
243 <  void getBoxM( double theBox[3][3] );
244 <  void scaleBox( double scale );
245 <  
246 <  void setDefaultRcut( double theRcut );
247 <  void setDefaultRcut( double theRcut, double theRsw );
248 <  void checkCutOffs( void );
237 >        /** Returns the molecule stamp */
238 >        MoleculeStamp* getMoleculeStamp(int id) {
239 >            return moleculeStamps_[id];
240 >        }
241 >        
242 >        /**
243 >         * Finds a molecule with a specified global index
244 >         * @return a pointer point to found molecule
245 >         * @param index
246 >         */
247 >        Molecule* getMoleculeByGlobalIndex(int index) {
248 >            std::map<int, Molecule*> i;
249 >            i = molecules_.find(index);
250  
251 <  double getRcut( void )  { return rCut; }
252 <  double getRlist( void ) { return rList; }
170 <  double getRsw( void )   { return rSw; }
171 <  double getMaxCutoff( void ) { return maxCutoff; }
172 <  
173 <  void setTime( double theTime ) { currentTime = theTime; }
174 <  void incrTime( double the_dt ) { currentTime += the_dt; }
175 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
176 <  double getTime( void ) { return currentTime; }
251 >            return i != molecules_.end() ? i->second : NULL;
252 >        }
253  
254 <  void wrapVector( double thePos[3] );
254 >        /** Returns the unique atom types of local processor in an array */
255 >        std::set<AtomType*> SimInfo::getUniqueAtomTypes();
256  
257 <  SimState* getConfiguration( void ) { return myConfiguration; }
258 <  
259 <  void addProperty(GenericData* prop);
260 <  GenericData* getProperty(const string& propName);
261 <  //vector<GenericData*>& getProperties()  {return properties;}    
257 >        std::string getFinalConfigFileName() {
258 >            return finalConfigFileName_;
259 >        }
260 >        
261 >        void setFinalConfigFileName(const std::string& fileName) {
262 >            finalConfigFileName_ = fileName;
263 >        }
264  
186  int getSeed(void) {  return seed; }
187  void setSeed(int theSeed) {  seed = theSeed;}
265  
266 < private:
266 >        std::string getDumpFileName() {
267 >            return dumpFileName_;
268 >        }
269 >        
270 >        void setDumpFileName(const std::string& fileName) {
271 >            dumpFileName_ = fileName;
272 >        }
273  
274 <  SimState* myConfiguration;
274 >        std::string getStatFileName() {
275 >            return statFileName_;
276 >        }
277 >        
278 >        void setStatFileName(const std::string& fileName) {
279 >            statFileName_ = fileName;
280 >        }
281  
282 <  int boxIsInit, haveRcut, haveRsw;
282 >        int* getGlobalGroupMembershipPointer() {
283 >            return globalGroupMembership_[0];
284 >        }
285  
286 <  double rList, rCut; // variables for the neighborlist
287 <  double rSw;         // the switching radius
286 >        //below functions are just forward functions
287 >        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
288 >        //the other hand, has-a relation need composing.
289 >        /**
290 >         * Adds property into property map
291 >         * @param genData GenericData to be added into PropertyMap
292 >         */
293 >        void addProperty(GenericData* genData);
294  
295 <  double maxCutoff;
295 >        /**
296 >         * Removes property from PropertyMap by name
297 >         * @param propName the name of property to be removed
298 >         */
299 >        void removeProperty(const std::string& propName);
300  
301 <  double distXY;
302 <  double distYZ;
303 <  double distZX;
304 <  
204 <  void calcHmatInv( void );
205 <  void calcBoxL();
206 <  double calcMaxCutOff();
301 >        /**
302 >         * clear all of the properties
303 >         */
304 >        void clearProperties();
305  
306 <  
307 <  //Addtional Properties of SimInfo
308 <  map<string, GenericData*> properties;
309 <  void getFortranGroupArrays(SimInfo* info,
310 <                             vector<int>& FglobalGroupMembership,
213 <                             vector<double>& mfact);
306 >        /**
307 >         * Returns all names of properties
308 >         * @return all names of properties
309 >         */
310 >        std::vector<std::string> getPropertyNames();
311  
312 +        /**
313 +         * Returns all of the properties in PropertyMap
314 +         * @return all of the properties in PropertyMap
315 +         */      
316 +        std::vector<GenericData*> getProperties();
317  
318 < };
318 >        /**
319 >         * Returns property
320 >         * @param propName name of property
321 >         * @return a pointer point to property with propName. If no property named propName
322 >         * exists, return NULL
323 >         */      
324 >        GenericData* getPropertyByName(const std::string& propName);
325 >                
326 >        friend std::ostream& operator <<(ostream& o, SimInfo& info);
327 >        
328 >    private:
329  
330 +        void setupSimType();
331  
332 +        /**
333 +         * Setup Fortran Simulation
334 +         * @see #setupFortranParallel
335 +         */
336 +        void setupFortranSim();
337 +
338 +        /** Calculates the number of degress of freedom in the whole system */
339 +        void calcNdf();
340 +        void calcNdfRaw();
341 +        void calcNdfTrans();
342 +
343 +        void addExcludePairs(Molecule* mol);
344 +        void removeExcludePairs(Molecule* mol);
345 +
346 +        /**
347 +         * Adds molecule stamps into
348 +         */
349 +        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
350 +
351 +        std::map<int, Molecule*>  molecules_; /**< Molecule array */
352 +        
353 +        //degress of freedom
354 +        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
355 +        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
356 +        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
357 +        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
358 +        
359 +        //number of global objects
360 +        int nGlobalMols_;       /**< number of molecules in the system */
361 +        int nGlobalAtoms_;   /**< number of atoms in the system */
362 +        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
363 +
364 +        /**
365 +         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
366 +         * corresponding content is the global index of cutoff group this atom belong to.
367 +         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
368 +         */
369 +        std::vector<int> globalGroupMembership_;
370 +        
371 +        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
372 +        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
373 +        
374 +        //number of local objects
375 +        int nAtoms_;                        /**< number of atoms in local processor */
376 +        int nBonds_;                        /**< number of bonds in local processor */
377 +        int nBends_;                        /**< number of bends in local processor */
378 +        int nTorsions_;                    /**< number of torsions in local processor */
379 +        int nRigidBodies_;              /**< number of rigid bodies in local processor */
380 +        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
381 +        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
382 +        int nConstraints_;              /**< number of constraints in local processors */
383 +
384 +        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
385 +        Exclude exclude_;
386 +        ForceField* forceField_;            
387 +        PropertyMap properties_;                  /**< Generic Property */
388 +        SnapshotManager* sman_;               /**< SnapshotManager */
389 +        Globals* globals_;
390 +        int seed_; /**< seed for random number generator */
391 +
392 +        LocalIndexManager localIndexMan_;
393 +
394 +        std::string finalConfigFileName_;
395 +        std::string dumpFileName_;
396 +        std::string statFileName_;
397 +        
398 + #ifdef IS_MPI
399 +    //in Parallel version, we need MolToProc
400 +    public:
401 +                
402 +        /**
403 +         * Finds the processor where a molecule resides
404 +         * @return the id of the processor which contains the molecule
405 +         * @param globalIndex global Index of the molecule
406 +         */
407 +        int getMolToProc(int globalIndex) {
408 +            //assert(globalIndex < molToProcMap_.size());
409 +            return molToProcMap_[globalIndex];
410 +        }
411 +
412 +        int* getMolToProcMapPointer() {
413 +            return &molToProcMap_[0];
414 +        }
415 +        
416 +    private:
417 +
418 +        void setupFortranParallel();
419 +        
420 +        /**
421 +         * The size of molToProcMap_ is equal to total number of molecules in the system.
422 +         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
423 +         * once.
424 +         */        
425 +        std::vector<int> molToProcMap_;
426   #endif
427 +
428 + };
429 +
430 + } //namespace oopse
431 + #endif //BRAINS_SIMMODEL_HPP

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines