ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/brains/Thermo.cpp
(Generate patch)

Comparing branches/new_design/OOPSE-3.0/src/brains/Thermo.cpp (file contents):
Revision 1722 by tim, Tue Nov 9 23:11:39 2004 UTC vs.
Revision 1804 by tim, Tue Nov 30 19:58:25 2004 UTC

# Line 1 | Line 1
1 < #include <math.h>
2 < #include <iostream>
3 < using namespace std;
4 <
5 < #ifdef IS_MPI
6 < #include <mpi.h>
7 < #endif //is_mpi
8 <
9 < #include "brains/Thermo.hpp"
10 < #include "primitives/SRI.hpp"
11 < #include "integrators/Integrator.hpp"
12 < #include "utils/simError.h"
13 < #include "math/MatVec3.h"
14 <
15 < #ifdef IS_MPI
16 < #define __C
17 < #include "brains/mpiSimulation.hpp"
18 < #endif // is_mpi
19 <
20 < inline double roundMe( double x ){
21 <      return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22 < }
23 <
24 < Thermo::Thermo( SimInfo* the_info ) {
25 <  info = the_info;
26 <  int baseSeed = the_info->getSeed();
27 <  
28 <  gaussStream = new gaussianSPRNG( baseSeed );
29 < }
30 <
31 < Thermo::~Thermo(){
32 <  delete gaussStream;
33 < }
34 <
35 < double Thermo::getKinetic(){
36 <
37 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double kinetic;
39 <  double amass;
40 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
42 <
43 <  double kinetic_global;
44 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 <  
46 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
48 <
49 <  for (kl=0; kl<integrableObjects.size(); kl++) {
50 <    aVel = integrableObjects[kl]->getVel();
51 <    amass = integrableObjects[kl]->getMass();
52 <
53 <   for(j=0; j<3; j++)
54 <      kinetic += amass*aVel[j]*aVel[j];
55 <
56 <   if (integrableObjects[kl]->isDirectional()){
57 <
58 <      aJ = integrableObjects[kl]->getJ();
59 <      integrableObjects[kl]->getI( I );
60 <
61 <      if (integrableObjects[kl]->isLinear()) {
62 <        i = integrableObjects[kl]->linearAxis();
63 <        j = (i+1)%3;
64 <        k = (i+2)%3;
65 <        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 <      } else {
67 <        for (j=0; j<3; j++)
68 <          kinetic += aJ[j]*aJ[j] / I[j][j];
69 <      }
70 <   }
71 <  }
72 < #ifdef IS_MPI
73 <  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74 <        MPI_SUM, MPI_COMM_WORLD);
75 <  kinetic = kinetic_global;
76 < #endif //is_mpi
77 <  
78 <  kinetic = kinetic * 0.5 / e_convert;
79 <
80 <  return kinetic;
81 < }
82 <
83 < double Thermo::getPotential(){
84 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
89 <
90 <  molecules = info->molecules;
91 <  nSRI = info->n_SRI;
92 <
93 <  potential_local = 0.0;
94 <  potential = 0.0;
95 <  potential_local += info->lrPot;
96 <
97 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
99 <  }
100 <
101 <  // Get total potential for entire system from MPI.
102 < #ifdef IS_MPI
103 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 <        MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
108 <
109 <  return potential;
110 < }
111 <
112 < double Thermo::getTotalE(){
113 <
114 <  double total;
115 <
116 <  total = this->getKinetic() + this->getPotential();
117 <  return total;
118 < }
119 <
120 < double Thermo::getTemperature(){
121 <
122 <  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123 <  double temperature;
124 <
125 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
126 <  return temperature;
127 < }
128 <
129 < double Thermo::getVolume() {
130 <
131 <  return info->boxVol;
132 < }
133 <
134 < double Thermo::getPressure() {
135 <
136 <  // Relies on the calculation of the full molecular pressure tensor
137 <  
138 <  const double p_convert = 1.63882576e8;
139 <  double press[3][3];
140 <  double pressure;
141 <
142 <  this->getPressureTensor(press);
143 <
144 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
145 <
146 <  return pressure;
147 < }
148 <
149 < double Thermo::getPressureX() {
150 <
151 <  // Relies on the calculation of the full molecular pressure tensor
152 <  
153 <  const double p_convert = 1.63882576e8;
154 <  double press[3][3];
155 <  double pressureX;
156 <
157 <  this->getPressureTensor(press);
158 <
159 <  pressureX = p_convert * press[0][0];
160 <
161 <  return pressureX;
162 < }
163 <
164 < double Thermo::getPressureY() {
165 <
166 <  // Relies on the calculation of the full molecular pressure tensor
167 <  
168 <  const double p_convert = 1.63882576e8;
169 <  double press[3][3];
170 <  double pressureY;
171 <
172 <  this->getPressureTensor(press);
173 <
174 <  pressureY = p_convert * press[1][1];
175 <
176 <  return pressureY;
177 < }
178 <
179 < double Thermo::getPressureZ() {
180 <
181 <  // Relies on the calculation of the full molecular pressure tensor
182 <  
183 <  const double p_convert = 1.63882576e8;
184 <  double press[3][3];
185 <  double pressureZ;
186 <
187 <  this->getPressureTensor(press);
188 <
189 <  pressureZ = p_convert * press[2][2];
190 <
191 <  return pressureZ;
192 < }
193 <
194 <
195 < void Thermo::getPressureTensor(double press[3][3]){
196 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
197 <  // routine derived via viral theorem description in:
198 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
199 <
200 <  const double e_convert = 4.184e-4;
201 <
202 <  double molmass, volume;
203 <  double vcom[3];
204 <  double p_local[9], p_global[9];
205 <  int i, j, k;
206 <
207 <  for (i=0; i < 9; i++) {    
208 <    p_local[i] = 0.0;
209 <    p_global[i] = 0.0;
210 <  }
211 <
212 <  // use velocities of integrableObjects and their masses:  
213 <
214 <  for (i=0; i < info->integrableObjects.size(); i++) {
215 <
216 <    molmass = info->integrableObjects[i]->getMass();
217 <    
218 <    vcom = info->integrableObjects[i]->getVel();
219 <    
220 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
221 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
222 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
223 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
224 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
225 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
226 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
227 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
228 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
229 <
230 <  }
231 <
232 <  // Get total for entire system from MPI.
233 <  
234 < #ifdef IS_MPI
235 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
236 < #else
237 <  for (i=0; i<9; i++) {
238 <    p_global[i] = p_local[i];
239 <  }
240 < #endif // is_mpi
241 <
242 <  volume = this->getVolume();
243 <
244 <
245 <
246 <  for(i = 0; i < 3; i++) {
247 <    for (j = 0; j < 3; j++) {
248 <      k = 3*i + j;
249 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
250 <    }
251 <  }
252 < }
253 <
254 < void Thermo::velocitize() {
255 <  
256 <  double aVel[3], aJ[3], I[3][3];
257 <  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258 <  double vdrift[3];
259 <  double vbar;
260 <  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261 <  double av2;
262 <  double kebar;
263 <  double temperature;
264 <  int nobj;
265 <
266 <  if (!info->have_target_temp) {
267 <    sprintf( painCave.errMsg,
268 <             "You can't resample the velocities without a targetTemp!\n"
269 <             );
270 <    painCave.isFatal = 1;
271 <    painCave.severity = OOPSE_ERROR;
272 <    simError();
273 <    return;
274 <  }
275 <
276 <  nobj = info->integrableObjects.size();
277 <  
278 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
284 <    
285 <    // uses equipartition theory to solve for vbar in angstrom/fs
286 <
287 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
288 <    vbar = sqrt( av2 );
289 <
290 <    // picks random velocities from a gaussian distribution
291 <    // centered on vbar
292 <
293 <    for (j=0; j<3; j++)
294 <      aVel[j] = vbar * gaussStream->getGaussian();
295 <    
296 <    info->integrableObjects[vr]->setVel( aVel );
297 <    
298 <    if(info->integrableObjects[vr]->isDirectional()){
299 <
300 <      info->integrableObjects[vr]->getI( I );
301 <
302 <      if (info->integrableObjects[vr]->isLinear()) {
303 <
304 <        l= info->integrableObjects[vr]->linearAxis();
305 <        m = (l+1)%3;
306 <        n = (l+2)%3;
307 <
308 <        aJ[l] = 0.0;
309 <        vbar = sqrt( 2.0 * kebar * I[m][m] );
310 <        aJ[m] = vbar * gaussStream->getGaussian();
311 <        vbar = sqrt( 2.0 * kebar * I[n][n] );
312 <        aJ[n] = vbar * gaussStream->getGaussian();
313 <        
314 <      } else {
315 <        for (j = 0 ; j < 3; j++) {
316 <          vbar = sqrt( 2.0 * kebar * I[j][j] );
317 <          aJ[j] = vbar * gaussStream->getGaussian();
318 <        }  
319 <      } // else isLinear
320 <
321 <      info->integrableObjects[vr]->setJ( aJ );
322 <      
323 <    }//isDirectional
324 <
325 <  }
326 <
327 <  // Get the Center of Mass drift velocity.
328 <
329 <  getCOMVel(vdrift);
330 <  
331 <  //  Corrects for the center of mass drift.
332 <  // sums all the momentum and divides by total mass.
333 <
334 <  for(vd = 0; vd < nobj; vd++){
335 <    
336 <    aVel = info->integrableObjects[vd]->getVel();
337 <    
338 <    for (j=0; j < 3; j++)
339 <      aVel[j] -= vdrift[j];
340 <        
341 <    info->integrableObjects[vd]->setVel( aVel );
342 <  }
343 <
344 < }
345 <
346 < void Thermo::getCOMVel(double vdrift[3]){
347 <
348 <  double mtot, mtot_local;
349 <  double aVel[3], amass;
350 <  double vdrift_local[3];
351 <  int vd, j;
352 <  int nobj;
353 <
354 <  nobj   = info->integrableObjects.size();
355 <
356 <  mtot_local = 0.0;
357 <  vdrift_local[0] = 0.0;
358 <  vdrift_local[1] = 0.0;
359 <  vdrift_local[2] = 0.0;
360 <  
361 <  for(vd = 0; vd < nobj; vd++){
362 <    
363 <    amass = info->integrableObjects[vd]->getMass();
364 <    aVel = info->integrableObjects[vd]->getVel();
365 <
366 <    for(j = 0; j < 3; j++)
367 <      vdrift_local[j] += aVel[j] * amass;
368 <    
369 <    mtot_local += amass;
370 <  }
371 <
372 < #ifdef IS_MPI
373 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
374 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
380 < #endif
381 <    
382 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
384 <  }
385 <  
386 < }
387 <
388 < void Thermo::getCOM(double COM[3]){
389 <
390 <  double mtot, mtot_local;
391 <  double aPos[3], amass;
392 <  double COM_local[3];
393 <  int i, j;
394 <  int nobj;
395 <
396 <  mtot_local = 0.0;
397 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
400 <
401 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
403 <    
404 <    amass = info->integrableObjects[i]->getMass();
405 <    aPos = info->integrableObjects[i]->getPos();
406 <
407 <    for(j = 0; j < 3; j++)
408 <      COM_local[j] += aPos[j] * amass;
409 <    
410 <    mtot_local += amass;
411 <  }
412 <
413 < #ifdef IS_MPI
414 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
421 < #endif
422 <    
423 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
427 <
428 < void Thermo::removeCOMdrift() {
429 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
431 <
432 <  nobj = info->integrableObjects.size();
433 <
434 <  // Get the Center of Mass drift velocity.
435 <
436 <  getCOMVel(vdrift);
437 <  
438 <  //  Corrects for the center of mass drift.
439 <  // sums all the momentum and divides by total mass.
440 <
441 <  for(vd = 0; vd < nobj; vd++){
442 <    
443 <    aVel = info->integrableObjects[vd]->getVel();
444 <    
445 <    for (j=0; j < 3; j++)
446 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
449 <  }
450 < }
1 > #include <math.h>
2 > #include <iostream>
3 >
4 > using namespace std;
5 >
6 > #ifdef IS_MPI
7 > #include <mpi.h>
8 > #endif //is_mpi
9 >
10 > #include "brains/Thermo.hpp"
11 > #include "primitives/Molecule.hpp"
12 > #include "utils/simError.h"
13 > #include "utils/OOPSEConstant.hpp"
14 >
15 > namespace oopse {
16 >
17 > double Thermo::getKinetic() {
18 >    SimInfo::MoleculeIterator miter;
19 >    std::vector<StuntDouble*>::iterator iiter;
20 >    Molecule* mol;
21 >    StuntDouble* integrableObject;    
22 >    double mass;
23 >    Vector3d vel;
24 >    Vector3d angMom;
25 >    Mat3x3d I;
26 >    int i;
27 >    int j;
28 >    int k;
29 >    double kinetic = 0.0;
30 >    double kinetic_global = 0.0;
31 >    
32 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
33 >        for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
34 >               integrableObject = mol->nextIntegrableObject(iiter)) {
35 >
36 >            double mass = integrableObject->getMass();
37 >            Vector3d vel = integrableObject->getVel();
38 >
39 >            kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
40 >
41 >            if (integrableObject->isDirectional()) {
42 >                angMom = integrableObject->getJ();
43 >                I = integrableObject->getI();
44 >
45 >                if (integrableObject->isLinear()) {
46 >                    i = integrableObject->linearAxis();
47 >                    j = (i + 1) % 3;
48 >                    k = (i + 2) % 3;
49 >                    kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
50 >                } else {                        
51 >                    kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
52 >                                    + angMom[2]*angMom[2]/I(2, 2);
53 >                }
54 >            }
55 >            
56 >        }
57 >    }
58 >    
59 > #ifdef IS_MPI
60 >
61 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
62 >                  MPI_COMM_WORLD);
63 >    kinetic = kinetic_global;
64 >
65 > #endif //is_mpi
66 >
67 >    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
68 >
69 >    return kinetic;
70 > }
71 >
72 > double Thermo::getPotential() {
73 >    double potential = 0.0;
74 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
75 >    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
76 >
77 >    SimInfo::MoleculeIterator i;
78 >    Molecule* mol;    
79 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
80 >        potential_local += mol->getPotential();
81 >    }
82 >
83 >    // Get total potential for entire system from MPI.
84 >
85 > #ifdef IS_MPI
86 >
87 >    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
88 >                  MPI_COMM_WORLD);
89 >
90 > #else
91 >
92 >    potential = potential_local;
93 >
94 > #endif // is_mpi
95 >
96 >    return potential;
97 > }
98 >
99 > double Thermo::getTotalE() {
100 >    double total;
101 >
102 >    total = this->getKinetic() + this->getPotential();
103 >    return total;
104 > }
105 >
106 > double Thermo::getTemperature() {
107 >    
108 >    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
109 >    return temperature;
110 > }
111 >
112 > double Thermo::getVolume() {
113 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114 >    return curSnapshot->getVolume();
115 > }
116 >
117 > double Thermo::getPressure() {
118 >
119 >    // Relies on the calculation of the full molecular pressure tensor
120 >
121 >
122 >    Mat3x3d tensor;
123 >    double pressure;
124 >
125 >    this->getPressureTensor(tensor);
126 >
127 >    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
128 >
129 >    return pressure;
130 > }
131 >
132 > void Thermo::getPressureTensor(Mat3x3d pressureTensor) {
133 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
134 >    // routine derived via viral theorem description in:
135 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
136 >
137 >    Mat3x3d p_local(0.0);
138 >    Mat3x3d p_global(0.0);
139 >
140 >    SimInfo::MoleculeIterator i;
141 >    std::vector<StuntDouble*>::iterator j;
142 >    Molecule* mol;
143 >    StuntDouble* integrableObject;    
144 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
145 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
146 >               integrableObject = mol->nextIntegrableObject(j)) {
147 >
148 >            double mass = integrableObject->getMass();
149 >            Vector3d vcom = integrableObject->getVel();
150 >            p_local += mass * outProduct(vcom, vcom);        
151 >        }
152 >    }
153 >    
154 > #ifdef IS_MPI
155 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
156 > #else
157 >    p_global = p_local;
158 > #endif // is_mpi
159 >
160 >    double volume = this->getVolume();
161 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
162 >    Mat3x3d tau = curSnapshot->statData.getTau();
163 >
164 >    pressureTensor =  p_global + OOPSEConstant::energyConvert/volume * tau;
165 > }
166 >
167 > } //end namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines