--- trunk/OOPSE-3.0/src/brains/Thermo.cpp 2004/09/24 04:16:43 1490 +++ branches/new_design/OOPSE-3.0/src/brains/Thermo.cpp 2004/12/02 02:08:29 1822 @@ -1,450 +1,185 @@ #include #include + using namespace std; #ifdef IS_MPI #include #endif //is_mpi -#include "Thermo.hpp" -#include "SRI.hpp" -#include "Integrator.hpp" -#include "simError.h" -#include "MatVec3.h" +#include "brains/Thermo.hpp" +#include "primitives/Molecule.hpp" +#include "utils/simError.h" +#include "utils/OOPSEConstant.hpp" -#ifdef IS_MPI -#define __C -#include "mpiSimulation.hpp" -#endif // is_mpi +namespace oopse { -inline double roundMe( double x ){ - return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); -} +double Thermo::getKinetic() { + SimInfo::MoleculeIterator miter; + std::vector::iterator iiter; + Molecule* mol; + StuntDouble* integrableObject; + double mass; + Vector3d vel; + Vector3d angMom; + Mat3x3d I; + int i; + int j; + int k; + double kinetic = 0.0; + double kinetic_global = 0.0; + + for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { + for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; + integrableObject = mol->nextIntegrableObject(iiter)) { -Thermo::Thermo( SimInfo* the_info ) { - info = the_info; - int baseSeed = the_info->getSeed(); - - gaussStream = new gaussianSPRNG( baseSeed ); -} + double mass = integrableObject->getMass(); + Vector3d vel = integrableObject->getVel(); -Thermo::~Thermo(){ - delete gaussStream; -} + kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); -double Thermo::getKinetic(){ + if (integrableObject->isDirectional()) { + angMom = integrableObject->getJ(); + I = integrableObject->getI(); - const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 - double kinetic; - double amass; - double aVel[3], aJ[3], I[3][3]; - int i, j, k, kl; + if (integrableObject->isLinear()) { + i = integrableObject->linearAxis(); + j = (i + 1) % 3; + k = (i + 2) % 3; + kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); + } else { + kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) + + angMom[2]*angMom[2]/I(2, 2); + } + } + + } + } + +#ifdef IS_MPI - double kinetic_global; - vector integrableObjects = info->integrableObjects; - - kinetic = 0.0; - kinetic_global = 0.0; + MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM, + MPI_COMM_WORLD); + kinetic = kinetic_global; - for (kl=0; klgetVel(aVel); - amass = integrableObjects[kl]->getMass(); - - for(j=0; j<3; j++) - kinetic += amass*aVel[j]*aVel[j]; - - if (integrableObjects[kl]->isDirectional()){ - - integrableObjects[kl]->getJ( aJ ); - integrableObjects[kl]->getI( I ); - - if (integrableObjects[kl]->isLinear()) { - i = integrableObjects[kl]->linearAxis(); - j = (i+1)%3; - k = (i+2)%3; - kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; - } else { - for (j=0; j<3; j++) - kinetic += aJ[j]*aJ[j] / I[j][j]; - } - } - } -#ifdef IS_MPI - MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, - MPI_SUM, MPI_COMM_WORLD); - kinetic = kinetic_global; #endif //is_mpi - - kinetic = kinetic * 0.5 / e_convert; - return kinetic; + kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert; + + return kinetic; } -double Thermo::getPotential(){ - - double potential_local; - double potential; - int el, nSRI; - Molecule* molecules; +double Thermo::getPotential() { + double potential = 0.0; + Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); + double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; - molecules = info->molecules; - nSRI = info->n_SRI; + SimInfo::MoleculeIterator i; + Molecule* mol; + for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { + potential_local += mol->getPotential(); + } - potential_local = 0.0; - potential = 0.0; - potential_local += info->lrPot; + // Get total potential for entire system from MPI. - for( el=0; eln_mol; el++ ){ - potential_local += molecules[el].getPotential(); - } - - // Get total potential for entire system from MPI. #ifdef IS_MPI - MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, - MPI_SUM, MPI_COMM_WORLD); -#else - potential = potential_local; -#endif // is_mpi - return potential; -} + MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM, + MPI_COMM_WORLD); -double Thermo::getTotalE(){ +#else - double total; + potential = potential_local; - total = this->getKinetic() + this->getPotential(); - return total; -} +#endif // is_mpi -double Thermo::getTemperature(){ - - const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) - double temperature; - - temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); - return temperature; + return potential; } -double Thermo::getVolume() { +double Thermo::getTotalE() { + double total; - return info->boxVol; + total = this->getKinetic() + this->getPotential(); + return total; } -double Thermo::getPressure() { - - // Relies on the calculation of the full molecular pressure tensor - - const double p_convert = 1.63882576e8; - double press[3][3]; - double pressure; - - this->getPressureTensor(press); - - pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; - - return pressure; +double Thermo::getTemperature() { + + double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb ); + return temperature; } -double Thermo::getPressureX() { - - // Relies on the calculation of the full molecular pressure tensor - - const double p_convert = 1.63882576e8; - double press[3][3]; - double pressureX; - - this->getPressureTensor(press); - - pressureX = p_convert * press[0][0]; - - return pressureX; +double Thermo::getVolume() { + Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); + return curSnapshot->getVolume(); } -double Thermo::getPressureY() { +double Thermo::getPressure() { - // Relies on the calculation of the full molecular pressure tensor - - const double p_convert = 1.63882576e8; - double press[3][3]; - double pressureY; + // Relies on the calculation of the full molecular pressure tensor - this->getPressureTensor(press); - pressureY = p_convert * press[1][1]; + Mat3x3d tensor; + double pressure; - return pressureY; -} + tensor = getPressureTensor(); -double Thermo::getPressureZ() { + pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; - // Relies on the calculation of the full molecular pressure tensor - - const double p_convert = 1.63882576e8; - double press[3][3]; - double pressureZ; - - this->getPressureTensor(press); - - pressureZ = p_convert * press[2][2]; - - return pressureZ; + return pressure; } +Mat3x3d Thermo::getPressureTensor() { + // returns pressure tensor in units amu*fs^-2*Ang^-1 + // routine derived via viral theorem description in: + // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 + Mat3x3d pressureTensor; + Mat3x3d p_local(0.0); + Mat3x3d p_global(0.0); -void Thermo::getPressureTensor(double press[3][3]){ - // returns pressure tensor in units amu*fs^-2*Ang^-1 - // routine derived via viral theorem description in: - // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 + SimInfo::MoleculeIterator i; + std::vector::iterator j; + Molecule* mol; + StuntDouble* integrableObject; + for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { + for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; + integrableObject = mol->nextIntegrableObject(j)) { - const double e_convert = 4.184e-4; - - double molmass, volume; - double vcom[3]; - double p_local[9], p_global[9]; - int i, j, k; - - for (i=0; i < 9; i++) { - p_local[i] = 0.0; - p_global[i] = 0.0; - } - - // use velocities of integrableObjects and their masses: - - for (i=0; i < info->integrableObjects.size(); i++) { - - molmass = info->integrableObjects[i]->getMass(); + double mass = integrableObject->getMass(); + Vector3d vcom = integrableObject->getVel(); + p_local += mass * outProduct(vcom, vcom); + } + } - info->integrableObjects[i]->getVel(vcom); - - p_local[0] += molmass * (vcom[0] * vcom[0]); - p_local[1] += molmass * (vcom[0] * vcom[1]); - p_local[2] += molmass * (vcom[0] * vcom[2]); - p_local[3] += molmass * (vcom[1] * vcom[0]); - p_local[4] += molmass * (vcom[1] * vcom[1]); - p_local[5] += molmass * (vcom[1] * vcom[2]); - p_local[6] += molmass * (vcom[2] * vcom[0]); - p_local[7] += molmass * (vcom[2] * vcom[1]); - p_local[8] += molmass * (vcom[2] * vcom[2]); - - } - - // Get total for entire system from MPI. - #ifdef IS_MPI - MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); + MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); #else - for (i=0; i<9; i++) { - p_global[i] = p_local[i]; - } + p_global = p_local; #endif // is_mpi - volume = this->getVolume(); + double volume = this->getVolume(); + Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); + Mat3x3d tau = curSnapshot->statData.getTau(); + pressureTensor = p_global + OOPSEConstant::energyConvert/volume * tau; - - for(i = 0; i < 3; i++) { - for (j = 0; j < 3; j++) { - k = 3*i + j; - press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; - } - } + return pressureTensor; } -void Thermo::velocitize() { - - double aVel[3], aJ[3], I[3][3]; - int i, j, l, m, n, vr, vd; // velocity randomizer loop counters - double vdrift[3]; - double vbar; - const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. - double av2; - double kebar; - double temperature; - int nobj; - - if (!info->have_target_temp) { - sprintf( painCave.errMsg, - "You can't resample the velocities without a targetTemp!\n" - ); - painCave.isFatal = 1; - painCave.severity = OOPSE_ERROR; - simError(); - return; - } - - nobj = info->integrableObjects.size(); - - temperature = info->target_temp; - - kebar = kb * temperature * (double)info->ndfRaw / - ( 2.0 * (double)info->ndf ); - - for(vr = 0; vr < nobj; vr++){ +void Thermo::saveStat(){ + Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); + Stats& stat = currSnapshot->statData; - // uses equipartition theory to solve for vbar in angstrom/fs + stat[Stats::KINETIC_ENERGY] = getKinetic(); + stat[Stats::POTENTIAL_ENERGY] = getPotential(); + stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ; + stat[Stats::TEMPERATURE] = getTemperature(); + stat[Stats::PRESSURE] = getPressure(); + stat[Stats::VOLUME] = getVolume(); - av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); - vbar = sqrt( av2 ); - - // picks random velocities from a gaussian distribution - // centered on vbar - - for (j=0; j<3; j++) - aVel[j] = vbar * gaussStream->getGaussian(); + /**@todo need refactorying*/ + //Conserved Quantity is set by integrator and time is set by setTime - info->integrableObjects[vr]->setVel( aVel ); - - if(info->integrableObjects[vr]->isDirectional()){ - - info->integrableObjects[vr]->getI( I ); - - if (info->integrableObjects[vr]->isLinear()) { - - l= info->integrableObjects[vr]->linearAxis(); - m = (l+1)%3; - n = (l+2)%3; - - aJ[l] = 0.0; - vbar = sqrt( 2.0 * kebar * I[m][m] ); - aJ[m] = vbar * gaussStream->getGaussian(); - vbar = sqrt( 2.0 * kebar * I[n][n] ); - aJ[n] = vbar * gaussStream->getGaussian(); - - } else { - for (j = 0 ; j < 3; j++) { - vbar = sqrt( 2.0 * kebar * I[j][j] ); - aJ[j] = vbar * gaussStream->getGaussian(); - } - } // else isLinear - - info->integrableObjects[vr]->setJ( aJ ); - - }//isDirectional - - } - - // Get the Center of Mass drift velocity. - - getCOMVel(vdrift); - - // Corrects for the center of mass drift. - // sums all the momentum and divides by total mass. - - for(vd = 0; vd < nobj; vd++){ - - info->integrableObjects[vd]->getVel(aVel); - - for (j=0; j < 3; j++) - aVel[j] -= vdrift[j]; - - info->integrableObjects[vd]->setVel( aVel ); - } - } -void Thermo::getCOMVel(double vdrift[3]){ - - double mtot, mtot_local; - double aVel[3], amass; - double vdrift_local[3]; - int vd, j; - int nobj; - - nobj = info->integrableObjects.size(); - - mtot_local = 0.0; - vdrift_local[0] = 0.0; - vdrift_local[1] = 0.0; - vdrift_local[2] = 0.0; - - for(vd = 0; vd < nobj; vd++){ - - amass = info->integrableObjects[vd]->getMass(); - info->integrableObjects[vd]->getVel( aVel ); - - for(j = 0; j < 3; j++) - vdrift_local[j] += aVel[j] * amass; - - mtot_local += amass; - } - -#ifdef IS_MPI - MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); - MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); -#else - mtot = mtot_local; - for(vd = 0; vd < 3; vd++) { - vdrift[vd] = vdrift_local[vd]; - } -#endif - - for (vd = 0; vd < 3; vd++) { - vdrift[vd] = vdrift[vd] / mtot; - } - -} - -void Thermo::getCOM(double COM[3]){ - - double mtot, mtot_local; - double aPos[3], amass; - double COM_local[3]; - int i, j; - int nobj; - - mtot_local = 0.0; - COM_local[0] = 0.0; - COM_local[1] = 0.0; - COM_local[2] = 0.0; - - nobj = info->integrableObjects.size(); - for(i = 0; i < nobj; i++){ - - amass = info->integrableObjects[i]->getMass(); - info->integrableObjects[i]->getPos( aPos ); - - for(j = 0; j < 3; j++) - COM_local[j] += aPos[j] * amass; - - mtot_local += amass; - } - -#ifdef IS_MPI - MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); - MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); -#else - mtot = mtot_local; - for(i = 0; i < 3; i++) { - COM[i] = COM_local[i]; - } -#endif - - for (i = 0; i < 3; i++) { - COM[i] = COM[i] / mtot; - } -} - -void Thermo::removeCOMdrift() { - double vdrift[3], aVel[3]; - int vd, j, nobj; - - nobj = info->integrableObjects.size(); - - // Get the Center of Mass drift velocity. - - getCOMVel(vdrift); - - // Corrects for the center of mass drift. - // sums all the momentum and divides by total mass. - - for(vd = 0; vd < nobj; vd++){ - - info->integrableObjects[vd]->getVel(aVel); - - for (j=0; j < 3; j++) - aVel[j] -= vdrift[j]; - - info->integrableObjects[vd]->setVel( aVel ); - } -} +} //end namespace oopse