ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/integrators/Integrator.cpp
Revision: 1695
Committed: Mon Nov 1 22:52:57 2004 UTC (19 years, 9 months ago) by tim
File size: 19667 byte(s)
Log Message:
Molecule, Atom, DirectionalAtom, RigidBody and StuntDouble classes get compiled

File Contents

# User Rev Content
1 tim 1695 #include <iostream>
2     #include <stdlib.h>
3     #include <math.h>
4     #ifdef IS_MPI
5     #include "brains/mpiSimulation.hpp"
6     #include <unistd.h>
7     #endif //is_mpi
8    
9     #ifdef PROFILE
10     #include "profiling/mdProfile.hpp"
11     #endif // profile
12    
13     #include "integrators/Integrator.hpp"
14     #include "utils/simError.h"
15    
16    
17     template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
18     ForceFields* the_ff){
19     info = theInfo;
20     myFF = the_ff;
21     isFirst = 1;
22    
23     molecules = info->molecules;
24     nMols = info->n_mol;
25    
26     // give a little love back to the SimInfo object
27    
28     if (info->the_integrator != NULL){
29     delete info->the_integrator;
30     }
31    
32     nAtoms = info->n_atoms;
33     integrableObjects = info->integrableObjects;
34    
35    
36     // check for constraints
37    
38     constrainedA = NULL;
39     constrainedB = NULL;
40     constrainedDsqr = NULL;
41     moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45     nConstrained = 0;
46    
47     checkConstraints();
48    
49     }
50    
51     template<typename T> Integrator<T>::~Integrator(){
52    
53     if (nConstrained){
54     delete[] constrainedA;
55     delete[] constrainedB;
56     delete[] constrainedDsqr;
57     delete[] moving;
58     delete[] moved;
59     delete[] oldPos;
60     }
61    
62     }
63    
64    
65     template<typename T> void Integrator<T>::checkConstraints(void){
66     isConstrained = 0;
67    
68     Constraint* temp_con;
69     Constraint* dummy_plug;
70     temp_con = new Constraint[info->n_SRI];
71     nConstrained = 0;
72     int constrained = 0;
73    
74     SRI** theArray;
75     for (int i = 0; i < nMols; i++){
76    
77     theArray = (SRI * *) molecules[i].getMyBonds();
78     for (int j = 0; j < molecules[i].getNBonds(); j++){
79     constrained = theArray[j]->is_constrained();
80    
81     if (constrained){
82     dummy_plug = theArray[j]->get_constraint();
83     temp_con[nConstrained].set_a(dummy_plug->get_a());
84     temp_con[nConstrained].set_b(dummy_plug->get_b());
85     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86    
87     nConstrained++;
88     constrained = 0;
89     }
90     }
91    
92     theArray = (SRI * *) molecules[i].getMyBends();
93     for (int j = 0; j < molecules[i].getNBends(); j++){
94     constrained = theArray[j]->is_constrained();
95    
96     if (constrained){
97     dummy_plug = theArray[j]->get_constraint();
98     temp_con[nConstrained].set_a(dummy_plug->get_a());
99     temp_con[nConstrained].set_b(dummy_plug->get_b());
100     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101    
102     nConstrained++;
103     constrained = 0;
104     }
105     }
106    
107     theArray = (SRI * *) molecules[i].getMyTorsions();
108     for (int j = 0; j < molecules[i].getNTorsions(); j++){
109     constrained = theArray[j]->is_constrained();
110    
111     if (constrained){
112     dummy_plug = theArray[j]->get_constraint();
113     temp_con[nConstrained].set_a(dummy_plug->get_a());
114     temp_con[nConstrained].set_b(dummy_plug->get_b());
115     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116    
117     nConstrained++;
118     constrained = 0;
119     }
120     }
121     }
122    
123    
124     if (nConstrained > 0){
125     isConstrained = 1;
126    
127     if (constrainedA != NULL)
128     delete[] constrainedA;
129     if (constrainedB != NULL)
130     delete[] constrainedB;
131     if (constrainedDsqr != NULL)
132     delete[] constrainedDsqr;
133    
134     constrainedA = new int[nConstrained];
135     constrainedB = new int[nConstrained];
136     constrainedDsqr = new double[nConstrained];
137    
138     for (int i = 0; i < nConstrained; i++){
139     constrainedA[i] = temp_con[i].get_a();
140     constrainedB[i] = temp_con[i].get_b();
141     constrainedDsqr[i] = temp_con[i].get_dsqr();
142     }
143    
144    
145     // save oldAtoms to check for lode balancing later on.
146    
147     oldAtoms = nAtoms;
148    
149     moving = new int[nAtoms];
150     moved = new int[nAtoms];
151    
152     oldPos = new double[nAtoms * 3];
153     }
154    
155     delete[] temp_con;
156     }
157    
158    
159     template<typename T> void Integrator<T>::integrate(void){
160    
161     double runTime = info->run_time;
162     double sampleTime = info->sampleTime;
163     double statusTime = info->statusTime;
164     double thermalTime = info->thermalTime;
165     double resetTime = info->resetTime;
166    
167     double difference;
168     double currSample;
169     double currThermal;
170     double currStatus;
171     double currReset;
172    
173     int calcPot, calcStress;
174    
175     tStats = new Thermo(info);
176     statOut = new StatWriter(info);
177     dumpOut = new DumpWriter(info);
178    
179     atoms = info->atoms;
180    
181     dt = info->dt;
182     dt2 = 0.5 * dt;
183    
184     readyCheck();
185    
186     // remove center of mass drift velocity (in case we passed in a configuration
187     // that was drifting
188     tStats->removeCOMdrift();
189    
190     // initialize the retraints if necessary
191     if (info->useSolidThermInt && !info->useLiquidThermInt) {
192     myFF->initRestraints();
193     }
194    
195     // initialize the forces before the first step
196    
197     calcForce(1, 1);
198    
199     //execute constraint algorithm to make sure at the very beginning the system is constrained
200     if(nConstrained){
201     preMove();
202     constrainA();
203     calcForce(1, 1);
204     constrainB();
205     }
206    
207     if (info->setTemp){
208     thermalize();
209     }
210    
211     calcPot = 0;
212     calcStress = 0;
213     currSample = sampleTime + info->getTime();
214     currThermal = thermalTime+ info->getTime();
215     currStatus = statusTime + info->getTime();
216     currReset = resetTime + info->getTime();
217    
218     dumpOut->writeDump(info->getTime());
219     statOut->writeStat(info->getTime());
220    
221    
222     #ifdef IS_MPI
223     strcpy(checkPointMsg, "The integrator is ready to go.");
224     MPIcheckPoint();
225     #endif // is_mpi
226    
227     while (info->getTime() < runTime && !stopIntegrator()){
228     difference = info->getTime() + dt - currStatus;
229     if (difference > 0 || fabs(difference) < 1e-4 ){
230     calcPot = 1;
231     calcStress = 1;
232     }
233    
234     #ifdef PROFILE
235     startProfile( pro1 );
236     #endif
237    
238     integrateStep(calcPot, calcStress);
239    
240     #ifdef PROFILE
241     endProfile( pro1 );
242    
243     startProfile( pro2 );
244     #endif // profile
245    
246     info->incrTime(dt);
247    
248     if (info->setTemp){
249     if (info->getTime() >= currThermal){
250     thermalize();
251     currThermal += thermalTime;
252     }
253     }
254    
255     if (info->getTime() >= currSample){
256     dumpOut->writeDump(info->getTime());
257     currSample += sampleTime;
258     }
259    
260     if (info->getTime() >= currStatus){
261     statOut->writeStat(info->getTime());
262     calcPot = 0;
263     calcStress = 0;
264     currStatus += statusTime;
265     }
266    
267     if (info->resetIntegrator){
268     if (info->getTime() >= currReset){
269     this->resetIntegrator();
270     currReset += resetTime;
271     }
272     }
273    
274     #ifdef PROFILE
275     endProfile( pro2 );
276     #endif //profile
277    
278     #ifdef IS_MPI
279     strcpy(checkPointMsg, "successfully took a time step.");
280     MPIcheckPoint();
281     #endif // is_mpi
282     }
283    
284     dumpOut->writeFinal(info->getTime());
285    
286     // dump out a file containing the omega values for the final configuration
287     if (info->useSolidThermInt && !info->useLiquidThermInt)
288     myFF->dumpzAngle();
289    
290    
291     delete dumpOut;
292     delete statOut;
293     }
294    
295     template<typename T> void Integrator<T>::integrateStep(int calcPot,
296     int calcStress){
297     // Position full step, and velocity half step
298    
299     #ifdef PROFILE
300     startProfile(pro3);
301     #endif //profile
302    
303     //save old state (position, velocity etc)
304     preMove();
305     #ifdef PROFILE
306     endProfile(pro3);
307    
308     startProfile(pro4);
309     #endif // profile
310    
311     moveA();
312    
313     #ifdef PROFILE
314     endProfile(pro4);
315    
316     startProfile(pro5);
317     #endif//profile
318    
319    
320     #ifdef IS_MPI
321     strcpy(checkPointMsg, "Succesful moveA\n");
322     MPIcheckPoint();
323     #endif // is_mpi
324    
325     // calc forces
326     calcForce(calcPot, calcStress);
327    
328     #ifdef IS_MPI
329     strcpy(checkPointMsg, "Succesful doForces\n");
330     MPIcheckPoint();
331     #endif // is_mpi
332    
333     #ifdef PROFILE
334     endProfile( pro5 );
335    
336     startProfile( pro6 );
337     #endif //profile
338    
339     // finish the velocity half step
340    
341     moveB();
342    
343     #ifdef PROFILE
344     endProfile(pro6);
345     #endif // profile
346    
347     #ifdef IS_MPI
348     strcpy(checkPointMsg, "Succesful moveB\n");
349     MPIcheckPoint();
350     #endif // is_mpi
351     }
352    
353    
354     template<typename T> void Integrator<T>::moveA(void){
355     size_t i, j;
356     DirectionalAtom* dAtom;
357     Vector3d Tb;
358     Vector3d ji;
359     Vector3d vel;
360     Vector3d pos;
361     Vector3d frc;
362     double mass;
363     double omega;
364    
365     for (i = 0; i < integrableObjects.size() ; i++){
366     vel = integrableObjects[i]->getVel();
367     pos = integrableObjects[i]->getPos();
368     integrableObjects[i]->getFrc(frc);
369    
370     mass = integrableObjects[i]->getMass();
371    
372     for (j = 0; j < 3; j++){
373     // velocity half step
374     vel[j] += (dt2 * frc[j] / mass) * eConvert;
375     // position whole step
376     pos[j] += dt * vel[j];
377     }
378    
379     integrableObjects[i]->setVel(vel);
380     integrableObjects[i]->setPos(pos);
381    
382     if (integrableObjects[i]->isDirectional()){
383    
384     // get and convert the torque to body frame
385    
386     Tb = integrableObjects[i]->getTrq();
387     integrableObjects[i]->lab2Body(Tb);
388    
389     // get the angular momentum, and propagate a half step
390    
391     ji = integrableObjects[i]->getJ();
392    
393     for (j = 0; j < 3; j++)
394     ji[j] += (dt2 * Tb[j]) * eConvert;
395    
396     this->rotationPropagation( integrableObjects[i], ji );
397    
398     integrableObjects[i]->setJ(ji);
399     }
400     }
401    
402     if(nConstrained)
403     constrainA();
404     }
405    
406    
407     template<typename T> void Integrator<T>::moveB(void){
408     int i, j;
409     double Tb[3], ji[3];
410     double vel[3], frc[3];
411     double mass;
412    
413     for (i = 0; i < integrableObjects.size(); i++){
414     vel = integrableObjects[i]->getVel();
415     integrableObjects[i]->getFrc(frc);
416    
417     mass = integrableObjects[i]->getMass();
418    
419     // velocity half step
420     for (j = 0; j < 3; j++)
421     vel[j] += (dt2 * frc[j] / mass) * eConvert;
422    
423     integrableObjects[i]->setVel(vel);
424    
425     if (integrableObjects[i]->isDirectional()){
426    
427     // get and convert the torque to body frame
428    
429     Tb = integrableObjects[i]->getTrq();
430     integrableObjects[i]->lab2Body(Tb);
431    
432     // get the angular momentum, and propagate a half step
433    
434     ji = integrableObjects[i]->getJ();
435    
436     for (j = 0; j < 3; j++)
437     ji[j] += (dt2 * Tb[j]) * eConvert;
438    
439    
440     integrableObjects[i]->setJ(ji);
441     }
442     }
443    
444     if(nConstrained)
445     constrainB();
446     }
447    
448    
449     template<typename T> void Integrator<T>::preMove(void){
450     int i, j;
451     double pos[3];
452    
453     if (nConstrained){
454     for (i = 0; i < nAtoms; i++){
455     pos = atoms[i]->getPos();
456    
457     for (j = 0; j < 3; j++){
458     oldPos[3 * i + j] = pos[j];
459     }
460     }
461     }
462     }
463    
464     template<typename T> void Integrator<T>::constrainA(){
465     int i, j;
466     int done;
467     double posA[3], posB[3];
468     double velA[3], velB[3];
469     double pab[3];
470     double rab[3];
471     int a, b, ax, ay, az, bx, by, bz;
472     double rma, rmb;
473     double dx, dy, dz;
474     double rpab;
475     double rabsq, pabsq, rpabsq;
476     double diffsq;
477     double gab;
478     int iteration;
479    
480     for (i = 0; i < nAtoms; i++){
481     moving[i] = 0;
482     moved[i] = 1;
483     }
484    
485     iteration = 0;
486     done = 0;
487     while (!done && (iteration < maxIteration)){
488     done = 1;
489     for (i = 0; i < nConstrained; i++){
490     a = constrainedA[i];
491     b = constrainedB[i];
492    
493     ax = (a * 3) + 0;
494     ay = (a * 3) + 1;
495     az = (a * 3) + 2;
496    
497     bx = (b * 3) + 0;
498     by = (b * 3) + 1;
499     bz = (b * 3) + 2;
500    
501     if (moved[a] || moved[b]){
502     posA = atoms[a]->getPos();
503     posB = atoms[b]->getPos();
504    
505     for (j = 0; j < 3; j++)
506     pab[j] = posA[j] - posB[j];
507    
508     //periodic boundary condition
509    
510     info->wrapVector(pab);
511    
512     pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
513    
514     rabsq = constrainedDsqr[i];
515     diffsq = rabsq - pabsq;
516    
517     // the original rattle code from alan tidesley
518     if (fabs(diffsq) > (tol * rabsq * 2)){
519     rab[0] = oldPos[ax] - oldPos[bx];
520     rab[1] = oldPos[ay] - oldPos[by];
521     rab[2] = oldPos[az] - oldPos[bz];
522    
523     info->wrapVector(rab);
524    
525     rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
526    
527     rpabsq = rpab * rpab;
528    
529    
530     if (rpabsq < (rabsq * -diffsq)){
531     #ifdef IS_MPI
532     a = atoms[a]->getGlobalIndex();
533     b = atoms[b]->getGlobalIndex();
534     #endif //is_mpi
535     sprintf(painCave.errMsg,
536     "Constraint failure in constrainA at atom %d and %d.\n", a,
537     b);
538     painCave.isFatal = 1;
539     simError();
540     }
541    
542     rma = 1.0 / atoms[a]->getMass();
543     rmb = 1.0 / atoms[b]->getMass();
544    
545     gab = diffsq / (2.0 * (rma + rmb) * rpab);
546    
547     dx = rab[0] * gab;
548     dy = rab[1] * gab;
549     dz = rab[2] * gab;
550    
551     posA[0] += rma * dx;
552     posA[1] += rma * dy;
553     posA[2] += rma * dz;
554    
555     atoms[a]->setPos(posA);
556    
557     posB[0] -= rmb * dx;
558     posB[1] -= rmb * dy;
559     posB[2] -= rmb * dz;
560    
561     atoms[b]->setPos(posB);
562    
563     dx = dx / dt;
564     dy = dy / dt;
565     dz = dz / dt;
566    
567     velA = atoms[a]->getVel();
568    
569     velA[0] += rma * dx;
570     velA[1] += rma * dy;
571     velA[2] += rma * dz;
572    
573     atoms[a]->setVel(velA);
574    
575     velB = atoms[b]->getVel();
576    
577     velB[0] -= rmb * dx;
578     velB[1] -= rmb * dy;
579     velB[2] -= rmb * dz;
580    
581     atoms[b]->setVel(velB);
582    
583     moving[a] = 1;
584     moving[b] = 1;
585     done = 0;
586     }
587     }
588     }
589    
590     for (i = 0; i < nAtoms; i++){
591     moved[i] = moving[i];
592     moving[i] = 0;
593     }
594    
595     iteration++;
596     }
597    
598     if (!done){
599     sprintf(painCave.errMsg,
600     "Constraint failure in constrainA, too many iterations: %d\n",
601     iteration);
602     painCave.isFatal = 1;
603     simError();
604     }
605    
606     }
607    
608     template<typename T> void Integrator<T>::constrainB(void){
609     int i, j;
610     int done;
611     double posA[3], posB[3];
612     double velA[3], velB[3];
613     double vxab, vyab, vzab;
614     double rab[3];
615     int a, b, ax, ay, az, bx, by, bz;
616     double rma, rmb;
617     double dx, dy, dz;
618     double rvab;
619     double gab;
620     int iteration;
621    
622     for (i = 0; i < nAtoms; i++){
623     moving[i] = 0;
624     moved[i] = 1;
625     }
626    
627     done = 0;
628     iteration = 0;
629     while (!done && (iteration < maxIteration)){
630     done = 1;
631    
632     for (i = 0; i < nConstrained; i++){
633     a = constrainedA[i];
634     b = constrainedB[i];
635    
636     ax = (a * 3) + 0;
637     ay = (a * 3) + 1;
638     az = (a * 3) + 2;
639    
640     bx = (b * 3) + 0;
641     by = (b * 3) + 1;
642     bz = (b * 3) + 2;
643    
644     if (moved[a] || moved[b]){
645     velA = atoms[a]->getVel();
646     velB = atoms[b]->getVel();
647    
648     vxab = velA[0] - velB[0];
649     vyab = velA[1] - velB[1];
650     vzab = velA[2] - velB[2];
651    
652     posA = atoms[a]->getPos();
653     posB = atoms[b]->getPos();
654    
655     for (j = 0; j < 3; j++)
656     rab[j] = posA[j] - posB[j];
657    
658     info->wrapVector(rab);
659    
660     rma = 1.0 / atoms[a]->getMass();
661     rmb = 1.0 / atoms[b]->getMass();
662    
663     rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
664    
665     gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
666    
667     if (fabs(gab) > tol){
668     dx = rab[0] * gab;
669     dy = rab[1] * gab;
670     dz = rab[2] * gab;
671    
672     velA[0] += rma * dx;
673     velA[1] += rma * dy;
674     velA[2] += rma * dz;
675    
676     atoms[a]->setVel(velA);
677    
678     velB[0] -= rmb * dx;
679     velB[1] -= rmb * dy;
680     velB[2] -= rmb * dz;
681    
682     atoms[b]->setVel(velB);
683    
684     moving[a] = 1;
685     moving[b] = 1;
686     done = 0;
687     }
688     }
689     }
690    
691     for (i = 0; i < nAtoms; i++){
692     moved[i] = moving[i];
693     moving[i] = 0;
694     }
695    
696     iteration++;
697     }
698    
699     if (!done){
700     sprintf(painCave.errMsg,
701     "Constraint failure in constrainB, too many iterations: %d\n",
702     iteration);
703     painCave.isFatal = 1;
704     simError();
705     }
706     }
707    
708     template<typename T> void Integrator<T>::rotationPropagation
709     ( StuntDouble* sd, double ji[3] ){
710    
711     double angle;
712     double A[3][3], I[3][3];
713     int i, j, k;
714    
715     // use the angular velocities to propagate the rotation matrix a
716     // full time step
717    
718     sd->getA(A);
719     sd->getI(I);
720    
721     if (sd->isLinear()) {
722     i = sd->linearAxis();
723     j = (i+1)%3;
724     k = (i+2)%3;
725    
726     angle = dt2 * ji[j] / I[j][j];
727     this->rotate( k, i, angle, ji, A );
728    
729     angle = dt * ji[k] / I[k][k];
730     this->rotate( i, j, angle, ji, A);
731    
732     angle = dt2 * ji[j] / I[j][j];
733     this->rotate( k, i, angle, ji, A );
734    
735     } else {
736     // rotate about the x-axis
737     angle = dt2 * ji[0] / I[0][0];
738     this->rotate( 1, 2, angle, ji, A );
739    
740     // rotate about the y-axis
741     angle = dt2 * ji[1] / I[1][1];
742     this->rotate( 2, 0, angle, ji, A );
743    
744     // rotate about the z-axis
745     angle = dt * ji[2] / I[2][2];
746     sd->addZangle(angle);
747     this->rotate( 0, 1, angle, ji, A);
748    
749     // rotate about the y-axis
750     angle = dt2 * ji[1] / I[1][1];
751     this->rotate( 2, 0, angle, ji, A );
752    
753     // rotate about the x-axis
754     angle = dt2 * ji[0] / I[0][0];
755     this->rotate( 1, 2, angle, ji, A );
756    
757     }
758     sd->setA( A );
759     }
760    
761     template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
762     double angle, double ji[3],
763     double A[3][3]){
764     int i, j, k;
765     double sinAngle;
766     double cosAngle;
767     double angleSqr;
768     double angleSqrOver4;
769     double top, bottom;
770     double rot[3][3];
771     double tempA[3][3];
772     double tempJ[3];
773    
774     // initialize the tempA
775    
776     for (i = 0; i < 3; i++){
777     for (j = 0; j < 3; j++){
778     tempA[j][i] = A[i][j];
779     }
780     }
781    
782     // initialize the tempJ
783    
784     for (i = 0; i < 3; i++)
785     tempJ[i] = ji[i];
786    
787     // initalize rot as a unit matrix
788    
789     rot[0][0] = 1.0;
790     rot[0][1] = 0.0;
791     rot[0][2] = 0.0;
792    
793     rot[1][0] = 0.0;
794     rot[1][1] = 1.0;
795     rot[1][2] = 0.0;
796    
797     rot[2][0] = 0.0;
798     rot[2][1] = 0.0;
799     rot[2][2] = 1.0;
800    
801     // use a small angle aproximation for sin and cosine
802    
803     angleSqr = angle * angle;
804     angleSqrOver4 = angleSqr / 4.0;
805     top = 1.0 - angleSqrOver4;
806     bottom = 1.0 + angleSqrOver4;
807    
808     cosAngle = top / bottom;
809     sinAngle = angle / bottom;
810    
811     rot[axes1][axes1] = cosAngle;
812     rot[axes2][axes2] = cosAngle;
813    
814     rot[axes1][axes2] = sinAngle;
815     rot[axes2][axes1] = -sinAngle;
816    
817     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
818    
819     for (i = 0; i < 3; i++){
820     ji[i] = 0.0;
821     for (k = 0; k < 3; k++){
822     ji[i] += rot[i][k] * tempJ[k];
823     }
824     }
825    
826     // rotate the Rotation matrix acording to:
827     // A[][] = A[][] * transpose(rot[][])
828    
829    
830     // NOte for as yet unknown reason, we are performing the
831     // calculation as:
832     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
833    
834     for (i = 0; i < 3; i++){
835     for (j = 0; j < 3; j++){
836     A[j][i] = 0.0;
837     for (k = 0; k < 3; k++){
838     A[j][i] += tempA[i][k] * rot[j][k];
839     }
840     }
841     }
842     }
843    
844     template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
845     myFF->doForces(calcPot, calcStress);
846     }
847    
848     template<typename T> void Integrator<T>::thermalize(){
849     tStats->velocitize();
850     }
851    
852     template<typename T> double Integrator<T>::getConservedQuantity(void){
853     return tStats->getTotalE();
854     }
855     template<typename T> string Integrator<T>::getAdditionalParameters(void){
856     //By default, return a null string
857     //The reason we use string instead of char* is that if we use char*, we will
858     //return a pointer point to local variable which might cause problem
859     return string();
860     }