ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/integrators/NVT.cpp
(Generate patch)

Comparing branches/new_design/OOPSE-3.0/src/integrators/NVT.cpp (file contents):
Revision 1701 by tim, Wed Nov 3 16:08:43 2004 UTC vs.
Revision 1762 by tim, Fri Nov 19 21:38:22 2004 UTC

# Line 1 | Line 1
1 < #include <math.h>
2 <
3 < #include "primitives/Atom.hpp"
4 < #include "primitives/SRI.hpp"
5 < #include "primitives/AbstractClasses.hpp"
6 < #include "brains/SimInfo.hpp"
7 < #include "UseTheForce/ForceFields.hpp"
8 < #include "brains/Thermo.hpp"
9 < #include "io/ReadWrite.hpp"
10 < #include "integrators/Integrator.hpp"
11 < #include "utils/simError.h"
12 <
13 <
14 < // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
15 <
16 < template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff):
17 <  T( theInfo, the_ff )
18 < {
19 <  GenericData* data;
20 <  DoubleGenericData * chiValue;
21 <  DoubleGenericData * integralOfChidtValue;
22 <
23 <  chiValue = NULL;
24 <  integralOfChidtValue = NULL;
25 <
26 <  chi = 0.0;
27 <  have_tau_thermostat = 0;
28 <  have_target_temp = 0;
29 <  have_chi_tolerance = 0;
30 <  integralOfChidt = 0.0;
31 <
32 <
33 <  if( theInfo->useInitXSstate ){
34 <
35 <    // retrieve chi and integralOfChidt from simInfo
36 <    data = info->getPropertyByName(CHIVALUE_ID);
37 <    if(data){
38 <      chiValue = dynamic_cast<DoubleGenericData*>(data);
39 <    }
40 <    
41 <    data = info->getPropertyByName(INTEGRALOFCHIDT_ID);
42 <    if(data){
43 <      integralOfChidtValue = dynamic_cast<DoubleGenericData*>(data);
44 <    }
45 <    
46 <    // chi and integralOfChidt should appear by pair
47 <    if(chiValue && integralOfChidtValue){
48 <      chi = chiValue->getData();
49 <      integralOfChidt = integralOfChidtValue->getData();
50 <    }
51 <  }
52 <
53 <  oldVel = new double[3*integrableObjects.size()];
54 <  oldJi = new double[3*integrableObjects.size()];
55 < }
56 <
57 < template<typename T> NVT<T>::~NVT() {
58 <  delete[] oldVel;
59 <  delete[] oldJi;
60 < }
61 <
62 < template<typename T> void NVT<T>::moveA() {
63 <
64 <  int i, j;
65 <  DirectionalAtom* dAtom;
66 <  Vector3d Tb;
67 <  Vector3d ji;
68 <  double mass;
69 <  Vector3d vel;
70 <  Vector3d pos;
71 <  Vector3d frc;
72 <
73 <  double instTemp;
74 <
75 <  // We need the temperature at time = t for the chi update below:
76 <
77 <  instTemp = tStats->getTemperature();
78 <
79 <  for( i=0; i < integrableObjects.size(); i++ ){
80 <
81 <    vel = integrableObjects[i]->getVel();
82 <    pos = integrableObjects[i]->getPos();
83 <    integrableObjects[i]->getFrc( frc );
84 <
85 <    mass = integrableObjects[i]->getMass();
86 <
87 <    for (j=0; j < 3; j++) {
88 <      // velocity half step  (use chi from previous step here):
89 <      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi);
90 <      // position whole step
91 <      pos[j] += dt * vel[j];
92 <    }
93 <
94 <    integrableObjects[i]->setVel( vel );
95 <    integrableObjects[i]->setPos( pos );
96 <
97 <    if( integrableObjects[i]->isDirectional() ){
98 <
99 <      // get and convert the torque to body frame
100 <
101 <      Tb = integrableObjects[i]->getTrq();
102 <      integrableObjects[i]->lab2Body( Tb );
103 <
104 <      // get the angular momentum, and propagate a half step
105 <
106 <      ji = integrableObjects[i]->getJ();
107 <
108 <      for (j=0; j < 3; j++)
109 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
110 <
111 <      this->rotationPropagation( integrableObjects[i], ji );
112 <
113 <      integrableObjects[i]->setJ( ji );
114 <    }
115 <  }
116 <  
117 <  if(nConstrained)
118 <    constrainA();
119 <
120 <  // Finally, evolve chi a half step (just like a velocity) using
121 <  // temperature at time t, not time t+dt/2
122 <
123 <  //std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n";
124 <  
125 <  chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat);
126 <  integralOfChidt += chi*dt2;
127 <
128 < }
129 <
130 < template<typename T> void NVT<T>::moveB( void ){
131 <  int i, j, k;
132 <  double Tb[3], ji[3];
133 <  double vel[3], frc[3];
134 <  double mass;
135 <  double instTemp;
136 <  double oldChi, prevChi;
137 <
138 <  // Set things up for the iteration:
139 <
140 <  oldChi = chi;
141 <
142 <  for( i=0; i < integrableObjects.size(); i++ ){
143 <
144 <    vel = integrableObjects[i]->getVel();
145 <
146 <    for (j=0; j < 3; j++)
147 <      oldVel[3*i + j]  = vel[j];
148 <
149 <    if( integrableObjects[i]->isDirectional() ){
150 <
151 <      ji = integrableObjects[i]->getJ();
152 <
153 <      for (j=0; j < 3; j++)
154 <        oldJi[3*i + j] = ji[j];
155 <
156 <    }
157 <  }
158 <
159 <  // do the iteration:
160 <
161 <  for (k=0; k < 4; k++) {
162 <
163 <    instTemp = tStats->getTemperature();
164 <
165 <    // evolve chi another half step using the temperature at t + dt/2
166 <
167 <    prevChi = chi;
168 <    chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) /
169 <      (tauThermostat*tauThermostat);
170 <
171 <    for( i=0; i < integrableObjects.size(); i++ ){
172 <
173 <      integrableObjects[i]->getFrc( frc );
174 <      vel = integrableObjects[i]->getVel();
175 <
176 <      mass = integrableObjects[i]->getMass();
177 <
178 <      // velocity half step
179 <      for (j=0; j < 3; j++)
180 <        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi);
181 <
182 <      integrableObjects[i]->setVel( vel );
183 <
184 <      if( integrableObjects[i]->isDirectional() ){
185 <
186 <        // get and convert the torque to body frame
187 <
188 <        Tb = integrableObjects[i]->getTrq();
189 <        integrableObjects[i]->lab2Body( Tb );
190 <
191 <        for (j=0; j < 3; j++)
192 <          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
193 <
194 <        integrableObjects[i]->setJ( ji );
195 <      }
196 <    }
197 <    
198 <    if(nConstrained)
199 <      constrainB();
200 <
201 <    if (fabs(prevChi - chi) <= chiTolerance) break;
202 <  }
203 <
204 <  integralOfChidt += dt2*chi;
205 < }
206 <
207 < template<typename T> void NVT<T>::resetIntegrator( void ){
208 <
209 <  chi = 0.0;
210 <  integralOfChidt = 0.0;
211 < }
212 <
213 < template<typename T> int NVT<T>::readyCheck() {
214 <
215 <  //check parent's readyCheck() first
216 <  if (T::readyCheck() == -1)
217 <    return -1;
218 <
219 <  // First check to see if we have a target temperature.
220 <  // Not having one is fatal.
221 <
222 <  if (!have_target_temp) {
223 <    sprintf( painCave.errMsg,
224 <             "You can't use the NVT integrator without a targetTemp!\n"
225 <             );
226 <    painCave.isFatal = 1;
227 <    painCave.severity = OOPSE_ERROR;
228 <    simError();
229 <    return -1;
230 <  }
231 <
232 <  // We must set tauThermostat.
233 <
234 <  if (!have_tau_thermostat) {
235 <    sprintf( painCave.errMsg,
236 <             "If you use the constant temperature\n"
237 <             "\tintegrator, you must set tauThermostat.\n");
238 <    painCave.severity = OOPSE_ERROR;
239 <    painCave.isFatal = 1;
240 <    simError();
241 <    return -1;
242 <  }
243 <
244 <  if (!have_chi_tolerance) {
245 <    sprintf( painCave.errMsg,
246 <             "In NVT integrator: setting chi tolerance to 1e-6\n");
247 <    chiTolerance = 1e-6;
248 <    have_chi_tolerance = 1;
249 <    painCave.severity = OOPSE_INFO;
250 <    painCave.isFatal = 0;
251 <    simError();
252 <  }
253 <
254 <  return 1;
255 <
256 < }
257 <
258 < template<typename T> double NVT<T>::getConservedQuantity(void){
259 <
260 <  double conservedQuantity;
261 <  double fkBT;
262 <  double Energy;
263 <  double thermostat_kinetic;
264 <  double thermostat_potential;
265 <
266 <  fkBT = (double)(info->ndf) * kB * targetTemp;
267 <
268 <  Energy = tStats->getTotalE();
269 <
270 <  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
271 <    (2.0 * eConvert);
272 <
273 <  thermostat_potential = fkBT * integralOfChidt / eConvert;
274 <
275 <  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
276 <
277 <  return conservedQuantity;
278 < }
279 <
280 < template<typename T> string NVT<T>::getAdditionalParameters(void){
281 <  string parameters;
282 <  const int BUFFERSIZE = 2000; // size of the read buffer
283 <  char buffer[BUFFERSIZE];
284 <
285 <  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
286 <  parameters += buffer;
287 <
288 <  return parameters;
289 < }
1 > #include <math.h>
2 >
3 > #include "primitives/Atom.hpp"
4 > #include "primitives/SRI.hpp"
5 > #include "primitives/AbstractClasses.hpp"
6 > #include "brains/SimInfo.hpp"
7 > #include "UseTheForce/ForceFields.hpp"
8 > #include "brains/Thermo.hpp"
9 > #include "io/ReadWrite.hpp"
10 > #include "integrators/Integrator.hpp"
11 > #include "utils/simError.h"
12 >
13 > // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
14 >
15 > template <typename T>NVT<T>::NVT(SimInfo *theInfo, ForceFields *the_ff) :
16 >    T(theInfo, the_ff) {
17 >    GenericData *data;
18 >    DoubleGenericData *chiValue;
19 >    DoubleGenericData *integralOfChidtValue;
20 >
21 >    chiValue = NULL;
22 >    integralOfChidtValue = NULL;
23 >
24 >    chi = 0.0;
25 >    have_tau_thermostat = 0;
26 >    have_target_temp = 0;
27 >    have_chi_tolerance = 0;
28 >    integralOfChidt = 0.0;
29 >
30 >    if (theInfo->useInitXSstate) {
31 >
32 >        // retrieve chi and integralOfChidt from simInfo
33 >        data = info->getPropertyByName(CHIVALUE_ID);
34 >
35 >        if (data) {
36 >            chiValue = dynamic_cast<DoubleGenericData *>(data);
37 >        }
38 >
39 >        data = info->getPropertyByName(INTEGRALOFCHIDT_ID);
40 >
41 >        if (data) {
42 >            integralOfChidtValue = dynamic_cast<DoubleGenericData *>(data);
43 >        }
44 >
45 >        // chi and integralOfChidt should appear by pair
46 >        if (chiValue && integralOfChidtValue) {
47 >            chi = chiValue->getData();
48 >            integralOfChidt = integralOfChidtValue->getData();
49 >        }
50 >    }
51 >
52 >    oldVel = new double[3 * integrableObjects.size()];
53 >    oldJi = new double[3 * integrableObjects.size()];
54 > }
55 >
56 > template <typename T>NVT<T>::~NVT() {
57 >    delete [] oldVel;
58 >    delete [] oldJi;
59 > }
60 >
61 > template <typename T>
62 > void NVT<T>::moveA() {
63 >    int i, j;
64 >    DirectionalAtom *dAtom;
65 >    Vector3d Tb;
66 >    Vector3d ji;
67 >    double mass;
68 >    Vector3d vel;
69 >    Vector3d pos;
70 >    Vector3d frc;
71 >
72 >    double instTemp;
73 >
74 >    // We need the temperature at time = t for the chi update below:
75 >
76 >    instTemp = tStats->getTemperature();
77 >
78 >    for(i = 0; i < integrableObjects.size(); i++) {
79 >        vel = integrableObjects[i]->getVel();
80 >        pos = integrableObjects[i]->getPos();
81 >        integrableObjects[i]->getFrc(frc);
82 >
83 >        mass = integrableObjects[i]->getMass();
84 >
85 >        for(j = 0; j < 3; j++) {
86 >            // velocity half step  (use chi from previous step here):
87 >            vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi);
88 >
89 >            // position whole step
90 >            pos[j] += dt * vel[j];
91 >        }
92 >
93 >        integrableObjects[i]->setVel(vel);
94 >        integrableObjects[i]->setPos(pos);
95 >
96 >        if (integrableObjects[i]->isDirectional()) {
97 >
98 >            // get and convert the torque to body frame
99 >
100 >            Tb = integrableObjects[i]->getTrq();
101 >            integrableObjects[i]->lab2Body(Tb);
102 >
103 >            // get the angular momentum, and propagate a half step
104 >
105 >            ji = integrableObjects[i]->getJ();
106 >
107 >            for(j = 0; j < 3; j++)
108 >        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
109 >
110 >            this->rotationPropagation(integrableObjects[i], ji);
111 >
112 >            integrableObjects[i]->setJ(ji);
113 >        }
114 >    }
115 >
116 >    if (nConstrained)
117 >        constrainA();
118 >
119 >    // Finally, evolve chi a half step (just like a velocity) using
120 >    // temperature at time t, not time t+dt/2
121 >
122 >    //std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n";
123 >
124 >    chi += dt2 * (instTemp / targetTemp - 1.0) / (tauThermostat * tauThermostat);
125 >    integralOfChidt += chi * dt2;
126 > }
127 >
128 > template <typename T>
129 > void NVT<T>::moveB(void) {
130 >    int i, j, k;
131 >    double Tb[3], ji[3];
132 >    double vel[3], frc[3];
133 >    double mass;
134 >    double instTemp;
135 >    double oldChi, prevChi;
136 >
137 >    // Set things up for the iteration:
138 >
139 >    oldChi = chi;
140 >
141 >    for(i = 0; i < integrableObjects.size(); i++) {
142 >        vel = integrableObjects[i]->getVel();
143 >
144 >        for(j = 0; j < 3; j++)
145 >    oldVel[3 * i + j] = vel[j];
146 >
147 >        if (integrableObjects[i]->isDirectional()) {
148 >            ji = integrableObjects[i]->getJ();
149 >
150 >            for(j = 0; j < 3; j++)
151 >        oldJi[3 * i + j] = ji[j];
152 >        }
153 >    }
154 >
155 >    // do the iteration:
156 >
157 >    for(k = 0; k < 4; k++) {
158 >        instTemp = tStats->getTemperature();
159 >
160 >        // evolve chi another half step using the temperature at t + dt/2
161 >
162 >        prevChi = chi;
163 >        chi = oldChi + dt2 * (instTemp / targetTemp - 1.0) / (tauThermostat * tauThermostat);
164 >
165 >        for(i = 0; i < integrableObjects.size(); i++) {
166 >            integrableObjects[i]->getFrc(frc);
167 >            vel = integrableObjects[i]->getVel();
168 >
169 >            mass = integrableObjects[i]->getMass();
170 >
171 >            // velocity half step
172 >            for(j = 0; j < 3; j++)
173 >        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi);
174 >
175 >            integrableObjects[i]->setVel(vel);
176 >
177 >            if (integrableObjects[i]->isDirectional()) {
178 >
179 >                // get and convert the torque to body frame
180 >
181 >                Tb = integrableObjects[i]->getTrq();
182 >                integrableObjects[i]->lab2Body(Tb);
183 >
184 >                for(j = 0; j < 3; j++)
185 >            ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
186 >
187 >                integrableObjects[i]->setJ(ji);
188 >            }
189 >        }
190 >
191 >        if (nConstrained)
192 >            constrainB();
193 >
194 >        if (fabs(prevChi - chi) <= chiTolerance)
195 >            break;
196 >    }
197 >
198 >    integralOfChidt += dt2 * chi;
199 > }
200 >
201 > template <typename T>
202 > void NVT<T>::resetIntegrator(void) {
203 >    chi = 0.0;
204 >    integralOfChidt = 0.0;
205 > }
206 >
207 > template <typename T>
208 > int NVT<T>::readyCheck() {
209 >
210 >    //check parent's readyCheck() first
211 >    if (T::readyCheck() == -1)
212 >        return -1;
213 >
214 >    // First check to see if we have a target temperature.
215 >    // Not having one is fatal.
216 >
217 >    if (!have_target_temp) {
218 >        sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n");
219 >        painCave.isFatal = 1;
220 >        painCave.severity = OOPSE_ERROR;
221 >        simError();
222 >        return -1;
223 >    }
224 >
225 >    // We must set tauThermostat.
226 >
227 >    if (!have_tau_thermostat) {
228 >        sprintf(painCave.errMsg, "If you use the constant temperature\n"
229 >                                     "\tintegrator, you must set tauThermostat.\n");
230 >
231 >        painCave.severity = OOPSE_ERROR;
232 >        painCave.isFatal = 1;
233 >        simError();
234 >        return -1;
235 >    }
236 >
237 >    if (!have_chi_tolerance) {
238 >        sprintf(painCave.errMsg, "In NVT integrator: setting chi tolerance to 1e-6\n");
239 >        chiTolerance = 1e - 6;
240 >        have_chi_tolerance = 1;
241 >        painCave.severity = OOPSE_INFO;
242 >        painCave.isFatal = 0;
243 >        simError();
244 >    }
245 >
246 >    return 1;
247 > }
248 >
249 > template <typename T>
250 > double NVT<T>::getConservedQuantity(void) {
251 >    double conservedQuantity;
252 >    double fkBT;
253 >    double Energy;
254 >    double thermostat_kinetic;
255 >    double thermostat_potential;
256 >
257 >    fkBT = (double)(info->ndf) *kB *targetTemp;
258 >
259 >    Energy = tStats->getTotalE();
260 >
261 >    thermostat_kinetic = fkBT * tauThermostat * tauThermostat * chi * chi / (2.0 * eConvert);
262 >
263 >    thermostat_potential = fkBT * integralOfChidt / eConvert;
264 >
265 >    conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
266 >
267 >    return conservedQuantity;
268 > }
269 >
270 > template <typename T>
271 > string NVT<T>::getAdditionalParameters(void) {
272 >    string parameters;
273 >    const int BUFFERSIZE = 2000; // size of the read buffer
274 >    char buffer[BUFFERSIZE];
275 >
276 >    sprintf(buffer, "\t%G\t%G;", chi, integralOfChidt);
277 >    parameters += buffer;
278 >
279 >    return parameters;
280 > }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines