ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/io/DumpWriter.cpp
(Generate patch)

Comparing:
trunk/OOPSE-3.0/src/io/DumpWriter.cpp (file contents), Revision 1490 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/new_design/OOPSE-3.0/src/io/DumpWriter.cpp (file contents), Revision 1695 by tim, Mon Nov 1 22:52:57 2004 UTC

# Line 1 | Line 1
1 < #define _LARGEFILE_SOURCE64
2 < #define _FILE_OFFSET_BITS 64
3 <
4 < #include <string.h>
5 < #include <iostream>
6 < #include <fstream>
7 < #include <algorithm>
8 < #include <utility>
9 <
10 < #ifdef IS_MPI
11 < #include <mpi.h>
12 < #include "mpiSimulation.hpp"
13 <
14 < namespace dWrite{
15 <  void DieDieDie( void );
16 < }
17 <
18 < using namespace dWrite;
19 < #endif //is_mpi
20 <
21 < #include "ReadWrite.hpp"
22 < #include "simError.h"
23 <
24 < DumpWriter::DumpWriter( SimInfo* the_entry_plug ){
25 <
26 <  entry_plug = the_entry_plug;
27 <
28 < #ifdef IS_MPI
29 <  if(worldRank == 0 ){
30 < #endif // is_mpi
31 <
32 <    dumpFile.open(entry_plug->sampleName.c_str(), ios::out | ios::trunc );
33 <
34 <    if( !dumpFile ){
35 <
36 <      sprintf( painCave.errMsg,
37 <               "Could not open \"%s\" for dump output.\n",
38 <               entry_plug->sampleName.c_str());
39 <      painCave.isFatal = 1;
40 <      simError();
41 <    }
42 <
43 < #ifdef IS_MPI
44 <  }
45 <
46 <  //sort the local atoms by global index
47 <  sortByGlobalIndex();
48 <  
49 <  sprintf( checkPointMsg,
50 <           "Sucessfully opened output file for dumping.\n");
51 <  MPIcheckPoint();
52 < #endif // is_mpi
53 < }
54 <
55 < DumpWriter::~DumpWriter( ){
56 <
57 < #ifdef IS_MPI
58 <  if(worldRank == 0 ){
59 < #endif // is_mpi
60 <
61 <    dumpFile.close();
62 <
63 < #ifdef IS_MPI
64 <  }
65 < #endif // is_mpi
66 < }
67 <
68 < #ifdef IS_MPI
69 <
70 < /**
71 < * A hook function to load balancing
72 < */
73 <
74 < void DumpWriter::update(){
75 <  sortByGlobalIndex();          
76 < }
77 <  
78 < /**
79 < * Auxiliary sorting function
80 < */
81 <
82 < bool indexSortingCriterion(const pair<int, int>& p1, const pair<int, int>& p2){
83 <  return p1.second < p2.second;
84 < }
85 <
86 < /**
87 < * Sorting the local index by global index
88 < */
89 <
90 < void DumpWriter::sortByGlobalIndex(){
91 <  Molecule* mols = entry_plug->molecules;  
92 <  indexArray.clear();
93 <  
94 <  for(int i = 0; i < entry_plug->n_mol;i++)
95 <    indexArray.push_back(make_pair(i, mols[i].getGlobalIndex()));
96 <  
97 <  sort(indexArray.begin(), indexArray.end(), indexSortingCriterion);    
98 < }
99 <
100 < #endif
101 <
102 < void DumpWriter::writeDump(double currentTime){
103 <
104 <  ofstream finalOut;
105 <  vector<ofstream*> fileStreams;
106 <
107 < #ifdef IS_MPI
108 <  if(worldRank == 0 ){
109 < #endif    
110 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
111 <    if( !finalOut ){
112 <      sprintf( painCave.errMsg,
113 <               "Could not open \"%s\" for final dump output.\n",
114 <               entry_plug->finalName.c_str() );
115 <      painCave.isFatal = 1;
116 <      simError();
117 <    }
118 < #ifdef IS_MPI
119 <  }
120 < #endif // is_mpi
121 <
122 <  fileStreams.push_back(&finalOut);
123 <  fileStreams.push_back(&dumpFile);
124 <
125 <  writeFrame(fileStreams, currentTime);
126 <
127 < #ifdef IS_MPI
128 <  finalOut.close();
129 < #endif
130 <        
131 < }
132 <
133 < void DumpWriter::writeFinal(double currentTime){
134 <
135 <  ofstream finalOut;
136 <  vector<ofstream*> fileStreams;
137 <
138 < #ifdef IS_MPI
139 <  if(worldRank == 0 ){
140 < #endif // is_mpi
141 <
142 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
143 <
144 <    if( !finalOut ){
145 <      sprintf( painCave.errMsg,
146 <               "Could not open \"%s\" for final dump output.\n",
147 <               entry_plug->finalName.c_str() );
148 <      painCave.isFatal = 1;
149 <      simError();
150 <    }
151 <
152 < #ifdef IS_MPI
153 <  }
154 < #endif // is_mpi
155 <  
156 <  fileStreams.push_back(&finalOut);  
157 <  writeFrame(fileStreams, currentTime);
158 <
159 < #ifdef IS_MPI
160 <  finalOut.close();
161 < #endif
162 <  
163 < }
164 <
165 < void DumpWriter::writeFrame( vector<ofstream*>& outFile, double currentTime ){
166 <
167 <  const int BUFFERSIZE = 2000;
168 <  const int MINIBUFFERSIZE = 100;
169 <
170 <  char tempBuffer[BUFFERSIZE];  
171 <  char writeLine[BUFFERSIZE];
172 <
173 <  int i;
174 <  unsigned int k;
175 <
176 < #ifdef IS_MPI
177 <  
178 <  /*********************************************************************
179 <   * Documentation?  You want DOCUMENTATION?
180 <   *
181 <   * Why all the potatoes below?  
182 <   *
183 <   * To make a long story short, the original version of DumpWriter
184 <   * worked in the most inefficient way possible.  Node 0 would
185 <   * poke each of the node for an individual atom's formatted data
186 <   * as node 0 worked its way down the global index. This was particularly
187 <   * inefficient since the method blocked all processors at every atom
188 <   * (and did it twice!).
189 <   *
190 <   * An intermediate version of DumpWriter could be described from Node
191 <   * zero's perspective as follows:
192 <   *
193 <   *  1) Have 100 of your friends stand in a circle.
194 <   *  2) When you say go, have all of them start tossing potatoes at
195 <   *     you (one at a time).
196 <   *  3) Catch the potatoes.
197 <   *
198 <   * It was an improvement, but MPI has buffers and caches that could
199 <   * best be described in this analogy as "potato nets", so there's no
200 <   * need to block the processors atom-by-atom.
201 <   *
202 <   * This new and improved DumpWriter works in an even more efficient
203 <   * way:
204 <   *
205 <   *  1) Have 100 of your friend stand in a circle.
206 <   *  2) When you say go, have them start tossing 5-pound bags of
207 <   *     potatoes at you.
208 <   *  3) Once you've caught a friend's bag of potatoes,
209 <   *     toss them a spud to let them know they can toss another bag.
210 <   *
211 <   * How's THAT for documentation?
212 <   *
213 <   *********************************************************************/
214 <
215 <  int *potatoes;
216 <  int myPotato;
217 <
218 <  int nProc;
219 <  int j, which_node, done, which_atom, local_index, currentIndex;
220 <  double atomData[13];
221 <  int isDirectional;
222 <  char* atomTypeString;
223 <  char MPIatomTypeString[MINIBUFFERSIZE];
224 <  int nObjects;
225 <  int msgLen; // the length of message actually recieved at master nodes
226 < #endif //is_mpi
227 <
228 <  double q[4], ji[3];
229 <  DirectionalAtom* dAtom;
230 <  double pos[3], vel[3];
231 <  int nTotObjects;
232 <  StuntDouble* sd;
233 <  char* molName;
234 <  vector<StuntDouble*> integrableObjects;
235 <  vector<StuntDouble*>::iterator iter;
236 <  nTotObjects = entry_plug->getTotIntegrableObjects();
237 < #ifndef IS_MPI
238 <  
239 <  for(k = 0; k < outFile.size(); k++){
240 <    *outFile[k] << nTotObjects << "\n";
241 <
242 <    *outFile[k] << currentTime << ";\t"
243 <               << entry_plug->Hmat[0][0] << "\t"
244 <                     << entry_plug->Hmat[1][0] << "\t"
245 <                     << entry_plug->Hmat[2][0] << ";\t"
246 <              
247 <               << entry_plug->Hmat[0][1] << "\t"
248 <                     << entry_plug->Hmat[1][1] << "\t"
249 <                     << entry_plug->Hmat[2][1] << ";\t"
250 <
251 <                     << entry_plug->Hmat[0][2] << "\t"
252 <                     << entry_plug->Hmat[1][2] << "\t"
253 <                     << entry_plug->Hmat[2][2] << ";";
254 <
255 <    //write out additional parameters, such as chi and eta
256 <    *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
257 <  }
258 <  
259 <  for( i=0; i< entry_plug->n_mol; i++ ){
260 <
261 <    integrableObjects = entry_plug->molecules[i].getIntegrableObjects();
262 <    molName = (entry_plug->compStamps[entry_plug->molecules[i].getStampID()])->getID();
263 <    
264 <    for( iter = integrableObjects.begin();iter !=  integrableObjects.end(); ++iter){
265 <      sd = *iter;
266 <      sd->getPos(pos);
267 <      sd->getVel(vel);
268 <
269 <      sprintf( tempBuffer,
270 <             "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
271 <             sd->getType(),
272 <             pos[0],
273 <             pos[1],
274 <             pos[2],
275 <             vel[0],
276 <             vel[1],
277 <             vel[2]);
278 <      strcpy( writeLine, tempBuffer );
279 <
280 <      if( sd->isDirectional() ){
281 <
282 <        sd->getQ( q );
283 <        sd->getJ( ji );
284 <
285 <        sprintf( tempBuffer,
286 <               "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
287 <               q[0],
288 <               q[1],
289 <               q[2],
290 <               q[3],
291 <                 ji[0],
292 <                 ji[1],
293 <                 ji[2]);
294 <        strcat( writeLine, tempBuffer );
295 <      }
296 <      else
297 <        strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
298 <    
299 <      for(k = 0; k < outFile.size(); k++)
300 <        *outFile[k] << writeLine;      
301 <    }
302 <
303 < }
304 <
305 < #else // is_mpi
306 <
307 <  /* code to find maximum tag value */
308 <  
309 <  int *tagub, flag, MAXTAG;
310 <  MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
311 <  if (flag) {
312 <    MAXTAG = *tagub;
313 <  } else {
314 <    MAXTAG = 32767;
315 <  }  
316 <
317 <  int haveError;
318 <
319 <  MPI_Status istatus;
320 <  int nCurObj;
321 <  int *MolToProcMap = mpiSim->getMolToProcMap();
322 <
323 <  // write out header and node 0's coordinates
324 <
325 <  if( worldRank == 0 ){
326 <
327 <    // Node 0 needs a list of the magic potatoes for each processor;
328 <
329 <    nProc = mpiSim->getNProcessors();
330 <    potatoes = new int[nProc];
331 <
332 <    //write out the comment lines
333 <    for (i = 0; i < nProc; i++)
334 <      potatoes[i] = 0;
335 <    
336 <      for(k = 0; k < outFile.size(); k++){
337 <        *outFile[k] << nTotObjects << "\n";
338 <
339 <        *outFile[k] << currentTime << ";\t"
340 <                         << entry_plug->Hmat[0][0] << "\t"
341 <                         << entry_plug->Hmat[1][0] << "\t"
342 <                         << entry_plug->Hmat[2][0] << ";\t"
343 <
344 <                         << entry_plug->Hmat[0][1] << "\t"
345 <                         << entry_plug->Hmat[1][1] << "\t"
346 <                         << entry_plug->Hmat[2][1] << ";\t"
347 <
348 <                         << entry_plug->Hmat[0][2] << "\t"
349 <                         << entry_plug->Hmat[1][2] << "\t"
350 <                         << entry_plug->Hmat[2][2] << ";";
351 <  
352 <        *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
353 <    }
354 <
355 <    currentIndex = 0;
356 <
357 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
358 <      
359 <      // Get the Node number which has this atom;
360 <      
361 <      which_node = MolToProcMap[i];
362 <      
363 <      if (which_node != 0) {
364 <        
365 <        if (potatoes[which_node] + 1 >= MAXTAG) {
366 <          // The potato was going to exceed the maximum value,
367 <          // so wrap this processor potato back to 0:        
368 <
369 <          potatoes[which_node] = 0;          
370 <          MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
371 <          
372 <        }
373 <
374 <        myPotato = potatoes[which_node];        
375 <
376 <        //recieve the number of integrableObject in current molecule
377 <        MPI_Recv(&nCurObj, 1, MPI_INT, which_node,
378 <                 myPotato, MPI_COMM_WORLD, &istatus);
379 <        myPotato++;
380 <        
381 <        for(int l = 0; l < nCurObj; l++){
382 <
383 <          if (potatoes[which_node] + 2 >= MAXTAG) {
384 <            // The potato was going to exceed the maximum value,
385 <            // so wrap this processor potato back to 0:        
386 <
387 <            potatoes[which_node] = 0;          
388 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
389 <            
390 <          }
391 <
392 <          MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node,
393 <          myPotato, MPI_COMM_WORLD, &istatus);
394 <
395 <          atomTypeString = MPIatomTypeString;
396 <
397 <          myPotato++;
398 <
399 <          MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, MPI_COMM_WORLD, &istatus);
400 <          myPotato++;
401 <
402 <          MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
403 <
404 <          if(msgLen  == 13)
405 <            isDirectional = 1;
406 <          else
407 <            isDirectional = 0;
408 <          
409 <          // If we've survived to here, format the line:
410 <            
411 <          if (!isDirectional) {
412 <        
413 <            sprintf( writeLine,
414 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
415 <                 atomTypeString,
416 <                 atomData[0],
417 <                 atomData[1],
418 <                 atomData[2],
419 <                 atomData[3],
420 <                 atomData[4],
421 <                 atomData[5]);
422 <        
423 <           strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
424 <        
425 <          }
426 <          else {
427 <        
428 <                sprintf( writeLine,
429 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
430 <                         atomTypeString,
431 <                         atomData[0],
432 <                         atomData[1],
433 <                         atomData[2],
434 <                         atomData[3],
435 <                         atomData[4],
436 <                         atomData[5],
437 <                         atomData[6],
438 <                         atomData[7],
439 <                         atomData[8],
440 <                         atomData[9],
441 <                         atomData[10],
442 <                         atomData[11],
443 <                         atomData[12]);
444 <            
445 <          }
446 <          
447 <          for(k = 0; k < outFile.size(); k++)
448 <            *outFile[k] << writeLine;            
449 <
450 <        }// end for(int l =0)
451 <        potatoes[which_node] = myPotato;
452 <
453 <      }
454 <      else {
455 <        
456 <        haveError = 0;
457 <        
458 <            local_index = indexArray[currentIndex].first;        
459 <
460 <        integrableObjects = (entry_plug->molecules[local_index]).getIntegrableObjects();
461 <
462 <        for(iter= integrableObjects.begin(); iter != integrableObjects.end(); ++iter){    
463 <                sd = *iter;
464 <            atomTypeString = sd->getType();
465 <            
466 <            sd->getPos(pos);
467 <            sd->getVel(vel);          
468 <          
469 <            atomData[0] = pos[0];
470 <            atomData[1] = pos[1];
471 <            atomData[2] = pos[2];
472 <
473 <            atomData[3] = vel[0];
474 <            atomData[4] = vel[1];
475 <            atomData[5] = vel[2];
476 <              
477 <            isDirectional = 0;
478 <
479 <            if( sd->isDirectional() ){
480 <
481 <              isDirectional = 1;
482 <                
483 <              sd->getQ( q );
484 <              sd->getJ( ji );
485 <
486 <              for (int j = 0; j < 6 ; j++)
487 <                atomData[j] = atomData[j];            
488 <              
489 <              atomData[6] = q[0];
490 <              atomData[7] = q[1];
491 <              atomData[8] = q[2];
492 <              atomData[9] = q[3];
493 <              
494 <              atomData[10] = ji[0];
495 <              atomData[11] = ji[1];
496 <              atomData[12] = ji[2];
497 <            }
498 <            
499 <            // If we've survived to here, format the line:
500 <            
501 <            if (!isDirectional) {
502 <        
503 <              sprintf( writeLine,
504 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
505 <                 atomTypeString,
506 <                 atomData[0],
507 <                 atomData[1],
508 <                 atomData[2],
509 <                 atomData[3],
510 <                 atomData[4],
511 <                 atomData[5]);
512 <        
513 <             strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
514 <        
515 <            }
516 <            else {
517 <        
518 <                sprintf( writeLine,
519 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
520 <                         atomTypeString,
521 <                         atomData[0],
522 <                         atomData[1],
523 <                         atomData[2],
524 <                         atomData[3],
525 <                         atomData[4],
526 <                         atomData[5],
527 <                         atomData[6],
528 <                         atomData[7],
529 <                         atomData[8],
530 <                         atomData[9],
531 <                         atomData[10],
532 <                         atomData[11],
533 <                         atomData[12]);
534 <              
535 <            }
536 <            
537 <            for(k = 0; k < outFile.size(); k++)
538 <              *outFile[k] << writeLine;
539 <            
540 <            
541 <        }//end for(iter = integrableObject.begin())
542 <        
543 <      currentIndex++;
544 <      }
545 <
546 <    }//end for(i = 0; i < mpiSim->getNmol())
547 <    
548 <    for(k = 0; k < outFile.size(); k++)
549 <      outFile[k]->flush();
550 <    
551 <    sprintf( checkPointMsg,
552 <             "Sucessfully took a dump.\n");
553 <    
554 <    MPIcheckPoint();        
555 <    
556 <    delete[] potatoes;
557 <    
558 <  } else {
559 <
560 <    // worldRank != 0, so I'm a remote node.  
561 <
562 <    // Set my magic potato to 0:
563 <
564 <    myPotato = 0;
565 <    currentIndex = 0;
566 <    
567 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
568 <      
569 <      // Am I the node which has this integrableObject?
570 <      
571 <      if (MolToProcMap[i] == worldRank) {
572 <
573 <
574 <        if (myPotato + 1 >= MAXTAG) {
575 <          
576 <          // The potato was going to exceed the maximum value,
577 <          // so wrap this processor potato back to 0 (and block until
578 <          // node 0 says we can go:
579 <          
580 <          MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
581 <          
582 <        }
583 <
584 <          local_index = indexArray[currentIndex].first;        
585 <          integrableObjects = entry_plug->molecules[local_index].getIntegrableObjects();
586 <          
587 <          nCurObj = integrableObjects.size();
588 <                      
589 <          MPI_Send(&nCurObj, 1, MPI_INT, 0,
590 <                             myPotato, MPI_COMM_WORLD);
591 <          myPotato++;
592 <
593 <          for( iter = integrableObjects.begin(); iter  != integrableObjects.end(); iter++){
594 <
595 <            if (myPotato + 2 >= MAXTAG) {
596 <          
597 <              // The potato was going to exceed the maximum value,
598 <              // so wrap this processor potato back to 0 (and block until
599 <              // node 0 says we can go:
600 <          
601 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
602 <              
603 <            }
604 <            
605 <            sd = *iter;
606 <            
607 <            atomTypeString = sd->getType();
608 <
609 <            sd->getPos(pos);
610 <            sd->getVel(vel);
611 <
612 <            atomData[0] = pos[0];
613 <            atomData[1] = pos[1];
614 <            atomData[2] = pos[2];
615 <
616 <            atomData[3] = vel[0];
617 <            atomData[4] = vel[1];
618 <            atomData[5] = vel[2];
619 <              
620 <            isDirectional = 0;
621 <
622 <            if( sd->isDirectional() ){
623 <
624 <                isDirectional = 1;
625 <                
626 <                sd->getQ( q );
627 <                sd->getJ( ji );
628 <                
629 <                
630 <                atomData[6] = q[0];
631 <                atomData[7] = q[1];
632 <                atomData[8] = q[2];
633 <                atomData[9] = q[3];
634 <      
635 <                atomData[10] = ji[0];
636 <                atomData[11] = ji[1];
637 <                atomData[12] = ji[2];
638 <              }
639 <
640 <            
641 <            strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
642 <
643 <            // null terminate the string before sending (just in case):
644 <            MPIatomTypeString[MINIBUFFERSIZE-1] = '\0';
645 <
646 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
647 <                             myPotato, MPI_COMM_WORLD);
648 <            
649 <            myPotato++;
650 <            
651 <            if (isDirectional) {
652 <
653 <              MPI_Send(atomData, 13, MPI_DOUBLE, 0,
654 <                       myPotato, MPI_COMM_WORLD);
655 <              
656 <            } else {
657 <
658 <              MPI_Send(atomData, 6, MPI_DOUBLE, 0,
659 <                       myPotato, MPI_COMM_WORLD);
660 <            }
661 <
662 <            myPotato++;  
663 <
664 <          }
665 <
666 <          currentIndex++;    
667 <          
668 <        }
669 <      
670 <      }
671 <
672 <    sprintf( checkPointMsg,
673 <             "Sucessfully took a dump.\n");
674 <    MPIcheckPoint();                
675 <    
676 <    }
677 <
678 <
679 <  
680 < #endif // is_mpi
681 < }
682 <
683 < #ifdef IS_MPI
684 <
685 < // a couple of functions to let us escape the write loop
686 <
687 < void dWrite::DieDieDie( void ){
688 <
689 <  MPI_Finalize();
690 <  exit (0);
691 < }
692 <
693 < #endif //is_mpi
1 > #define _LARGEFILE_SOURCE64
2 > #define _FILE_OFFSET_BITS 64
3 >
4 > #include <string.h>
5 > #include <iostream>
6 > #include <fstream>
7 > #include <algorithm>
8 > #include <utility>
9 >
10 > #ifdef IS_MPI
11 > #include <mpi.h>
12 > #include "brains/mpiSimulation.hpp"
13 >
14 > namespace dWrite{
15 >  void DieDieDie( void );
16 > }
17 >
18 > using namespace dWrite;
19 > #endif //is_mpi
20 >
21 > #include "io/ReadWrite.hpp"
22 > #include "utils/simError.h"
23 >
24 > DumpWriter::DumpWriter( SimInfo* the_entry_plug ){
25 >
26 >  entry_plug = the_entry_plug;
27 >
28 > #ifdef IS_MPI
29 >  if(worldRank == 0 ){
30 > #endif // is_mpi
31 >
32 >    dumpFile.open(entry_plug->sampleName.c_str(), ios::out | ios::trunc );
33 >
34 >    if( !dumpFile ){
35 >
36 >      sprintf( painCave.errMsg,
37 >               "Could not open \"%s\" for dump output.\n",
38 >               entry_plug->sampleName.c_str());
39 >      painCave.isFatal = 1;
40 >      simError();
41 >    }
42 >
43 > #ifdef IS_MPI
44 >  }
45 >
46 >  //sort the local atoms by global index
47 >  sortByGlobalIndex();
48 >  
49 >  sprintf( checkPointMsg,
50 >           "Sucessfully opened output file for dumping.\n");
51 >  MPIcheckPoint();
52 > #endif // is_mpi
53 > }
54 >
55 > DumpWriter::~DumpWriter( ){
56 >
57 > #ifdef IS_MPI
58 >  if(worldRank == 0 ){
59 > #endif // is_mpi
60 >
61 >    dumpFile.close();
62 >
63 > #ifdef IS_MPI
64 >  }
65 > #endif // is_mpi
66 > }
67 >
68 > #ifdef IS_MPI
69 >
70 > /**
71 > * A hook function to load balancing
72 > */
73 >
74 > void DumpWriter::update(){
75 >  sortByGlobalIndex();          
76 > }
77 >  
78 > /**
79 > * Auxiliary sorting function
80 > */
81 >
82 > bool indexSortingCriterion(const pair<int, int>& p1, const pair<int, int>& p2){
83 >  return p1.second < p2.second;
84 > }
85 >
86 > /**
87 > * Sorting the local index by global index
88 > */
89 >
90 > void DumpWriter::sortByGlobalIndex(){
91 >  Molecule* mols = entry_plug->molecules;  
92 >  indexArray.clear();
93 >  
94 >  for(int i = 0; i < entry_plug->n_mol;i++)
95 >    indexArray.push_back(make_pair(i, mols[i].getGlobalIndex()));
96 >  
97 >  sort(indexArray.begin(), indexArray.end(), indexSortingCriterion);    
98 > }
99 >
100 > #endif
101 >
102 > void DumpWriter::writeDump(double currentTime){
103 >
104 >  ofstream finalOut;
105 >  vector<ofstream*> fileStreams;
106 >
107 > #ifdef IS_MPI
108 >  if(worldRank == 0 ){
109 > #endif    
110 >    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
111 >    if( !finalOut ){
112 >      sprintf( painCave.errMsg,
113 >               "Could not open \"%s\" for final dump output.\n",
114 >               entry_plug->finalName.c_str() );
115 >      painCave.isFatal = 1;
116 >      simError();
117 >    }
118 > #ifdef IS_MPI
119 >  }
120 > #endif // is_mpi
121 >
122 >  fileStreams.push_back(&finalOut);
123 >  fileStreams.push_back(&dumpFile);
124 >
125 >  writeFrame(fileStreams, currentTime);
126 >
127 > #ifdef IS_MPI
128 >  finalOut.close();
129 > #endif
130 >        
131 > }
132 >
133 > void DumpWriter::writeFinal(double currentTime){
134 >
135 >  ofstream finalOut;
136 >  vector<ofstream*> fileStreams;
137 >
138 > #ifdef IS_MPI
139 >  if(worldRank == 0 ){
140 > #endif // is_mpi
141 >
142 >    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
143 >
144 >    if( !finalOut ){
145 >      sprintf( painCave.errMsg,
146 >               "Could not open \"%s\" for final dump output.\n",
147 >               entry_plug->finalName.c_str() );
148 >      painCave.isFatal = 1;
149 >      simError();
150 >    }
151 >
152 > #ifdef IS_MPI
153 >  }
154 > #endif // is_mpi
155 >  
156 >  fileStreams.push_back(&finalOut);  
157 >  writeFrame(fileStreams, currentTime);
158 >
159 > #ifdef IS_MPI
160 >  finalOut.close();
161 > #endif
162 >  
163 > }
164 >
165 > void DumpWriter::writeFrame( vector<ofstream*>& outFile, double currentTime ){
166 >
167 >  const int BUFFERSIZE = 2000;
168 >  const int MINIBUFFERSIZE = 100;
169 >
170 >  char tempBuffer[BUFFERSIZE];  
171 >  char writeLine[BUFFERSIZE];
172 >
173 >  int i;
174 >  unsigned int k;
175 >
176 > #ifdef IS_MPI
177 >  
178 >  /*********************************************************************
179 >   * Documentation?  You want DOCUMENTATION?
180 >   *
181 >   * Why all the potatoes below?  
182 >   *
183 >   * To make a long story short, the original version of DumpWriter
184 >   * worked in the most inefficient way possible.  Node 0 would
185 >   * poke each of the node for an individual atom's formatted data
186 >   * as node 0 worked its way down the global index. This was particularly
187 >   * inefficient since the method blocked all processors at every atom
188 >   * (and did it twice!).
189 >   *
190 >   * An intermediate version of DumpWriter could be described from Node
191 >   * zero's perspective as follows:
192 >   *
193 >   *  1) Have 100 of your friends stand in a circle.
194 >   *  2) When you say go, have all of them start tossing potatoes at
195 >   *     you (one at a time).
196 >   *  3) Catch the potatoes.
197 >   *
198 >   * It was an improvement, but MPI has buffers and caches that could
199 >   * best be described in this analogy as "potato nets", so there's no
200 >   * need to block the processors atom-by-atom.
201 >   *
202 >   * This new and improved DumpWriter works in an even more efficient
203 >   * way:
204 >   *
205 >   *  1) Have 100 of your friend stand in a circle.
206 >   *  2) When you say go, have them start tossing 5-pound bags of
207 >   *     potatoes at you.
208 >   *  3) Once you've caught a friend's bag of potatoes,
209 >   *     toss them a spud to let them know they can toss another bag.
210 >   *
211 >   * How's THAT for documentation?
212 >   *
213 >   *********************************************************************/
214 >
215 >  int *potatoes;
216 >  int myPotato;
217 >
218 >  int nProc;
219 >  int j, which_node, done, which_atom, local_index, currentIndex;
220 >  double atomData[13];
221 >  int isDirectional;
222 >  char* atomTypeString;
223 >  char MPIatomTypeString[MINIBUFFERSIZE];
224 >  int nObjects;
225 >  int msgLen; // the length of message actually recieved at master nodes
226 > #endif //is_mpi
227 >
228 >  Quat4d q;
229 >  Vector3d ji;
230 >  DirectionalAtom* dAtom;
231 >  Vector3d pos;
232 >  Vector3d vel;
233 >  
234 >  int nTotObjects;
235 >  StuntDouble* sd;
236 >  char* molName;
237 >  vector<StuntDouble*> integrableObjects;
238 >  vector<StuntDouble*>::iterator iter;
239 >  nTotObjects = entry_plug->getTotIntegrableObjects();
240 > #ifndef IS_MPI
241 >  
242 >  for(k = 0; k < outFile.size(); k++){
243 >    *outFile[k] << nTotObjects << "\n";
244 >
245 >    *outFile[k] << currentTime << ";\t"
246 >               << entry_plug->Hmat[0][0] << "\t"
247 >                     << entry_plug->Hmat[1][0] << "\t"
248 >                     << entry_plug->Hmat[2][0] << ";\t"
249 >              
250 >               << entry_plug->Hmat[0][1] << "\t"
251 >                     << entry_plug->Hmat[1][1] << "\t"
252 >                     << entry_plug->Hmat[2][1] << ";\t"
253 >
254 >                     << entry_plug->Hmat[0][2] << "\t"
255 >                     << entry_plug->Hmat[1][2] << "\t"
256 >                     << entry_plug->Hmat[2][2] << ";";
257 >
258 >    //write out additional parameters, such as chi and eta
259 >    *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
260 >  }
261 >  
262 >  for( i=0; i< entry_plug->n_mol; i++ ){
263 >
264 >    integrableObjects = entry_plug->molecules[i].getIntegrableObjects();
265 >    molName = (entry_plug->compStamps[entry_plug->molecules[i].getStampID()])->getID();
266 >    
267 >    for( iter = integrableObjects.begin();iter !=  integrableObjects.end(); ++iter){
268 >      sd = *iter;
269 >      pos = sd->getPos();
270 >      vel = sd->getVel();
271 >
272 >      sprintf( tempBuffer,
273 >             "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
274 >             sd->getType(),
275 >             pos[0],
276 >             pos[1],
277 >             pos[2],
278 >             vel[0],
279 >             vel[1],
280 >             vel[2]);
281 >      strcpy( writeLine, tempBuffer );
282 >
283 >      if( sd->isDirectional() ){
284 >
285 >        q = sd->getQ();
286 >        ji = sd->getJ();
287 >
288 >        sprintf( tempBuffer,
289 >               "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
290 >               q[0],
291 >               q[1],
292 >               q[2],
293 >               q[3],
294 >                 ji[0],
295 >                 ji[1],
296 >                 ji[2]);
297 >        strcat( writeLine, tempBuffer );
298 >      }
299 >      else
300 >        strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
301 >    
302 >      for(k = 0; k < outFile.size(); k++)
303 >        *outFile[k] << writeLine;      
304 >    }
305 >
306 > }
307 >
308 > #else // is_mpi
309 >
310 >  /* code to find maximum tag value */
311 >  
312 >  int *tagub, flag, MAXTAG;
313 >  MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
314 >  if (flag) {
315 >    MAXTAG = *tagub;
316 >  } else {
317 >    MAXTAG = 32767;
318 >  }  
319 >
320 >  int haveError;
321 >
322 >  MPI_Status istatus;
323 >  int nCurObj;
324 >  int *MolToProcMap = mpiSim->getMolToProcMap();
325 >
326 >  // write out header and node 0's coordinates
327 >
328 >  if( worldRank == 0 ){
329 >
330 >    // Node 0 needs a list of the magic potatoes for each processor;
331 >
332 >    nProc = mpiSim->getNProcessors();
333 >    potatoes = new int[nProc];
334 >
335 >    //write out the comment lines
336 >    for (i = 0; i < nProc; i++)
337 >      potatoes[i] = 0;
338 >    
339 >      for(k = 0; k < outFile.size(); k++){
340 >        *outFile[k] << nTotObjects << "\n";
341 >
342 >        *outFile[k] << currentTime << ";\t"
343 >                         << entry_plug->Hmat[0][0] << "\t"
344 >                         << entry_plug->Hmat[1][0] << "\t"
345 >                         << entry_plug->Hmat[2][0] << ";\t"
346 >
347 >                         << entry_plug->Hmat[0][1] << "\t"
348 >                         << entry_plug->Hmat[1][1] << "\t"
349 >                         << entry_plug->Hmat[2][1] << ";\t"
350 >
351 >                         << entry_plug->Hmat[0][2] << "\t"
352 >                         << entry_plug->Hmat[1][2] << "\t"
353 >                         << entry_plug->Hmat[2][2] << ";";
354 >  
355 >        *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
356 >    }
357 >
358 >    currentIndex = 0;
359 >
360 >    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
361 >      
362 >      // Get the Node number which has this atom;
363 >      
364 >      which_node = MolToProcMap[i];
365 >      
366 >      if (which_node != 0) {
367 >        
368 >        if (potatoes[which_node] + 1 >= MAXTAG) {
369 >          // The potato was going to exceed the maximum value,
370 >          // so wrap this processor potato back to 0:        
371 >
372 >          potatoes[which_node] = 0;          
373 >          MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
374 >          
375 >        }
376 >
377 >        myPotato = potatoes[which_node];        
378 >
379 >        //recieve the number of integrableObject in current molecule
380 >        MPI_Recv(&nCurObj, 1, MPI_INT, which_node,
381 >                 myPotato, MPI_COMM_WORLD, &istatus);
382 >        myPotato++;
383 >        
384 >        for(int l = 0; l < nCurObj; l++){
385 >
386 >          if (potatoes[which_node] + 2 >= MAXTAG) {
387 >            // The potato was going to exceed the maximum value,
388 >            // so wrap this processor potato back to 0:        
389 >
390 >            potatoes[which_node] = 0;          
391 >            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
392 >            
393 >          }
394 >
395 >          MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node,
396 >          myPotato, MPI_COMM_WORLD, &istatus);
397 >
398 >          atomTypeString = MPIatomTypeString;
399 >
400 >          myPotato++;
401 >
402 >          MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, MPI_COMM_WORLD, &istatus);
403 >          myPotato++;
404 >
405 >          MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
406 >
407 >          if(msgLen  == 13)
408 >            isDirectional = 1;
409 >          else
410 >            isDirectional = 0;
411 >          
412 >          // If we've survived to here, format the line:
413 >            
414 >          if (!isDirectional) {
415 >        
416 >            sprintf( writeLine,
417 >                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
418 >                 atomTypeString,
419 >                 atomData[0],
420 >                 atomData[1],
421 >                 atomData[2],
422 >                 atomData[3],
423 >                 atomData[4],
424 >                 atomData[5]);
425 >        
426 >           strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
427 >        
428 >          }
429 >          else {
430 >        
431 >                sprintf( writeLine,
432 >                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
433 >                         atomTypeString,
434 >                         atomData[0],
435 >                         atomData[1],
436 >                         atomData[2],
437 >                         atomData[3],
438 >                         atomData[4],
439 >                         atomData[5],
440 >                         atomData[6],
441 >                         atomData[7],
442 >                         atomData[8],
443 >                         atomData[9],
444 >                         atomData[10],
445 >                         atomData[11],
446 >                         atomData[12]);
447 >            
448 >          }
449 >          
450 >          for(k = 0; k < outFile.size(); k++)
451 >            *outFile[k] << writeLine;            
452 >
453 >        }// end for(int l =0)
454 >        potatoes[which_node] = myPotato;
455 >
456 >      }
457 >      else {
458 >        
459 >        haveError = 0;
460 >        
461 >            local_index = indexArray[currentIndex].first;        
462 >
463 >        integrableObjects = (entry_plug->molecules[local_index]).getIntegrableObjects();
464 >
465 >        for(iter= integrableObjects.begin(); iter != integrableObjects.end(); ++iter){    
466 >                sd = *iter;
467 >            atomTypeString = sd->getType();
468 >            
469 >            pos = sd->getPos();
470 >            vel = sd->getVel();          
471 >          
472 >            atomData[0] = pos[0];
473 >            atomData[1] = pos[1];
474 >            atomData[2] = pos[2];
475 >
476 >            atomData[3] = vel[0];
477 >            atomData[4] = vel[1];
478 >            atomData[5] = vel[2];
479 >              
480 >            isDirectional = 0;
481 >
482 >            if( sd->isDirectional() ){
483 >
484 >              isDirectional = 1;
485 >                
486 >              q = sd->getQ();
487 >              ji = sd->getJ();
488 >
489 >              for (int j = 0; j < 6 ; j++)
490 >                atomData[j] = atomData[j];            
491 >              
492 >              atomData[6] = q[0];
493 >              atomData[7] = q[1];
494 >              atomData[8] = q[2];
495 >              atomData[9] = q[3];
496 >              
497 >              atomData[10] = ji[0];
498 >              atomData[11] = ji[1];
499 >              atomData[12] = ji[2];
500 >            }
501 >            
502 >            // If we've survived to here, format the line:
503 >            
504 >            if (!isDirectional) {
505 >        
506 >              sprintf( writeLine,
507 >                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
508 >                 atomTypeString,
509 >                 atomData[0],
510 >                 atomData[1],
511 >                 atomData[2],
512 >                 atomData[3],
513 >                 atomData[4],
514 >                 atomData[5]);
515 >        
516 >             strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
517 >        
518 >            }
519 >            else {
520 >        
521 >                sprintf( writeLine,
522 >                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
523 >                         atomTypeString,
524 >                         atomData[0],
525 >                         atomData[1],
526 >                         atomData[2],
527 >                         atomData[3],
528 >                         atomData[4],
529 >                         atomData[5],
530 >                         atomData[6],
531 >                         atomData[7],
532 >                         atomData[8],
533 >                         atomData[9],
534 >                         atomData[10],
535 >                         atomData[11],
536 >                         atomData[12]);
537 >              
538 >            }
539 >            
540 >            for(k = 0; k < outFile.size(); k++)
541 >              *outFile[k] << writeLine;
542 >            
543 >            
544 >        }//end for(iter = integrableObject.begin())
545 >        
546 >      currentIndex++;
547 >      }
548 >
549 >    }//end for(i = 0; i < mpiSim->getNmol())
550 >    
551 >    for(k = 0; k < outFile.size(); k++)
552 >      outFile[k]->flush();
553 >    
554 >    sprintf( checkPointMsg,
555 >             "Sucessfully took a dump.\n");
556 >    
557 >    MPIcheckPoint();        
558 >    
559 >    delete[] potatoes;
560 >    
561 >  } else {
562 >
563 >    // worldRank != 0, so I'm a remote node.  
564 >
565 >    // Set my magic potato to 0:
566 >
567 >    myPotato = 0;
568 >    currentIndex = 0;
569 >    
570 >    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
571 >      
572 >      // Am I the node which has this integrableObject?
573 >      
574 >      if (MolToProcMap[i] == worldRank) {
575 >
576 >
577 >        if (myPotato + 1 >= MAXTAG) {
578 >          
579 >          // The potato was going to exceed the maximum value,
580 >          // so wrap this processor potato back to 0 (and block until
581 >          // node 0 says we can go:
582 >          
583 >          MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
584 >          
585 >        }
586 >
587 >          local_index = indexArray[currentIndex].first;        
588 >          integrableObjects = entry_plug->molecules[local_index].getIntegrableObjects();
589 >          
590 >          nCurObj = integrableObjects.size();
591 >                      
592 >          MPI_Send(&nCurObj, 1, MPI_INT, 0,
593 >                             myPotato, MPI_COMM_WORLD);
594 >          myPotato++;
595 >
596 >          for( iter = integrableObjects.begin(); iter  != integrableObjects.end(); iter++){
597 >
598 >            if (myPotato + 2 >= MAXTAG) {
599 >          
600 >              // The potato was going to exceed the maximum value,
601 >              // so wrap this processor potato back to 0 (and block until
602 >              // node 0 says we can go:
603 >          
604 >              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
605 >              
606 >            }
607 >            
608 >            sd = *iter;
609 >            
610 >            atomTypeString = sd->getType();
611 >
612 >            pos = sd->getPos();
613 >            vel = sd->getVel();
614 >
615 >            atomData[0] = pos[0];
616 >            atomData[1] = pos[1];
617 >            atomData[2] = pos[2];
618 >
619 >            atomData[3] = vel[0];
620 >            atomData[4] = vel[1];
621 >            atomData[5] = vel[2];
622 >              
623 >            isDirectional = 0;
624 >
625 >            if( sd->isDirectional() ){
626 >
627 >                isDirectional = 1;
628 >                
629 >                q = sd->getQ();
630 >                ji = sd->getJ();
631 >                
632 >                
633 >                atomData[6] = q[0];
634 >                atomData[7] = q[1];
635 >                atomData[8] = q[2];
636 >                atomData[9] = q[3];
637 >      
638 >                atomData[10] = ji[0];
639 >                atomData[11] = ji[1];
640 >                atomData[12] = ji[2];
641 >              }
642 >
643 >            
644 >            strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
645 >
646 >            // null terminate the string before sending (just in case):
647 >            MPIatomTypeString[MINIBUFFERSIZE-1] = '\0';
648 >
649 >            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
650 >                             myPotato, MPI_COMM_WORLD);
651 >            
652 >            myPotato++;
653 >            
654 >            if (isDirectional) {
655 >
656 >              MPI_Send(atomData, 13, MPI_DOUBLE, 0,
657 >                       myPotato, MPI_COMM_WORLD);
658 >              
659 >            } else {
660 >
661 >              MPI_Send(atomData, 6, MPI_DOUBLE, 0,
662 >                       myPotato, MPI_COMM_WORLD);
663 >            }
664 >
665 >            myPotato++;  
666 >
667 >          }
668 >
669 >          currentIndex++;    
670 >          
671 >        }
672 >      
673 >      }
674 >
675 >    sprintf( checkPointMsg,
676 >             "Sucessfully took a dump.\n");
677 >    MPIcheckPoint();                
678 >    
679 >    }
680 >
681 >
682 >  
683 > #endif // is_mpi
684 > }
685 >
686 > #ifdef IS_MPI
687 >
688 > // a couple of functions to let us escape the write loop
689 >
690 > void dWrite::DieDieDie( void ){
691 >
692 >  MPI_Finalize();
693 >  exit (0);
694 > }
695 >
696 > #endif //is_mpi

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines