ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/math/SquareMatrix3.hpp
Revision: 1883
Committed: Mon Dec 13 22:30:27 2004 UTC (19 years, 9 months ago) by tim
File size: 18198 byte(s)
Log Message:
MPI version is built

File Contents

# User Rev Content
1 tim 1563 /*
2     * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3     *
4     * Contact: oopse@oopse.org
5     *
6     * This program is free software; you can redistribute it and/or
7     * modify it under the terms of the GNU Lesser General Public License
8     * as published by the Free Software Foundation; either version 2.1
9     * of the License, or (at your option) any later version.
10     * All we ask is that proper credit is given for our work, which includes
11     * - but is not limited to - adding the above copyright notice to the beginning
12     * of your source code files, and to any copyright notice that you may distribute
13     * with programs based on this work.
14     *
15     * This program is distributed in the hope that it will be useful,
16     * but WITHOUT ANY WARRANTY; without even the implied warranty of
17     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18     * GNU Lesser General Public License for more details.
19     *
20     * You should have received a copy of the GNU Lesser General Public License
21     * along with this program; if not, write to the Free Software
22     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23     *
24     */
25    
26     /**
27     * @file SquareMatrix3.hpp
28     * @author Teng Lin
29     * @date 10/11/2004
30     * @version 1.0
31     */
32 tim 1616 #ifndef MATH_SQUAREMATRIX3_HPP
33 tim 1592 #define MATH_SQUAREMATRIX3_HPP
34 tim 1563
35 tim 1586 #include "Quaternion.hpp"
36 tim 1563 #include "SquareMatrix.hpp"
37 tim 1586 #include "Vector3.hpp"
38    
39 tim 1563 namespace oopse {
40    
41     template<typename Real>
42     class SquareMatrix3 : public SquareMatrix<Real, 3> {
43     public:
44 tim 1630
45     typedef Real ElemType;
46     typedef Real* ElemPoinerType;
47 tim 1563
48     /** default constructor */
49     SquareMatrix3() : SquareMatrix<Real, 3>() {
50     }
51    
52 tim 1644 /** Constructs and initializes every element of this matrix to a scalar */
53     SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){
54     }
55    
56     /** Constructs and initializes from an array */
57     SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){
58     }
59    
60    
61 tim 1563 /** copy constructor */
62     SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
63     }
64 tim 1695
65 tim 1586 SquareMatrix3( const Vector3<Real>& eulerAngles) {
66     setupRotMat(eulerAngles);
67     }
68    
69     SquareMatrix3(Real phi, Real theta, Real psi) {
70     setupRotMat(phi, theta, psi);
71     }
72    
73     SquareMatrix3(const Quaternion<Real>& q) {
74 tim 1606 setupRotMat(q);
75    
76 tim 1586 }
77    
78     SquareMatrix3(Real w, Real x, Real y, Real z) {
79 tim 1606 setupRotMat(w, x, y, z);
80 tim 1586 }
81    
82 tim 1563 /** copy assignment operator */
83     SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
84     if (this == &m)
85     return *this;
86     SquareMatrix<Real, 3>::operator=(m);
87 tim 1594 return *this;
88 tim 1563 }
89 tim 1569
90 tim 1870
91     SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) {
92     this->setupRotMat(q);
93     return *this;
94     }
95    
96 tim 1569 /**
97     * Sets this matrix to a rotation matrix by three euler angles
98     * @ param euler
99     */
100 tim 1586 void setupRotMat(const Vector3<Real>& eulerAngles) {
101     setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
102     }
103 tim 1569
104     /**
105     * Sets this matrix to a rotation matrix by three euler angles
106     * @param phi
107     * @param theta
108     * @psi theta
109     */
110 tim 1586 void setupRotMat(Real phi, Real theta, Real psi) {
111     Real sphi, stheta, spsi;
112     Real cphi, ctheta, cpsi;
113 tim 1569
114 tim 1586 sphi = sin(phi);
115     stheta = sin(theta);
116     spsi = sin(psi);
117     cphi = cos(phi);
118     ctheta = cos(theta);
119     cpsi = cos(psi);
120 tim 1569
121 tim 1586 data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
122     data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
123     data_[0][2] = spsi * stheta;
124    
125     data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
126     data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
127     data_[1][2] = cpsi * stheta;
128    
129     data_[2][0] = stheta * sphi;
130     data_[2][1] = -stheta * cphi;
131     data_[2][2] = ctheta;
132     }
133    
134    
135 tim 1569 /**
136     * Sets this matrix to a rotation matrix by quaternion
137     * @param quat
138     */
139 tim 1586 void setupRotMat(const Quaternion<Real>& quat) {
140 tim 1606 setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
141 tim 1586 }
142 tim 1569
143     /**
144     * Sets this matrix to a rotation matrix by quaternion
145 tim 1586 * @param w the first element
146     * @param x the second element
147     * @param y the third element
148 tim 1594 * @param z the fourth element
149 tim 1569 */
150 tim 1586 void setupRotMat(Real w, Real x, Real y, Real z) {
151     Quaternion<Real> q(w, x, y, z);
152     *this = q.toRotationMatrix3();
153     }
154 tim 1569
155     /**
156     * Returns the quaternion from this rotation matrix
157     * @return the quaternion from this rotation matrix
158     * @exception invalid rotation matrix
159     */
160 tim 1586 Quaternion<Real> toQuaternion() {
161     Quaternion<Real> q;
162     Real t, s;
163     Real ad1, ad2, ad3;
164     t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0;
165 tim 1569
166 tim 1586 if( t > 0.0 ){
167    
168     s = 0.5 / sqrt( t );
169     q[0] = 0.25 / s;
170     q[1] = (data_[1][2] - data_[2][1]) * s;
171     q[2] = (data_[2][0] - data_[0][2]) * s;
172     q[3] = (data_[0][1] - data_[1][0]) * s;
173     } else {
174    
175     ad1 = fabs( data_[0][0] );
176     ad2 = fabs( data_[1][1] );
177     ad3 = fabs( data_[2][2] );
178    
179     if( ad1 >= ad2 && ad1 >= ad3 ){
180    
181     s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] );
182     q[0] = (data_[1][2] + data_[2][1]) / s;
183     q[1] = 0.5 / s;
184     q[2] = (data_[0][1] + data_[1][0]) / s;
185     q[3] = (data_[0][2] + data_[2][0]) / s;
186     } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
187     s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0;
188     q[0] = (data_[0][2] + data_[2][0]) / s;
189     q[1] = (data_[0][1] + data_[1][0]) / s;
190     q[2] = 0.5 / s;
191     q[3] = (data_[1][2] + data_[2][1]) / s;
192     } else {
193    
194     s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0;
195     q[0] = (data_[0][1] + data_[1][0]) / s;
196     q[1] = (data_[0][2] + data_[2][0]) / s;
197     q[2] = (data_[1][2] + data_[2][1]) / s;
198     q[3] = 0.5 / s;
199     }
200     }
201    
202     return q;
203    
204     }
205    
206 tim 1569 /**
207     * Returns the euler angles from this rotation matrix
208 tim 1586 * @return the euler angles in a vector
209 tim 1569 * @exception invalid rotation matrix
210 tim 1586 * We use so-called "x-convention", which is the most common definition.
211     * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first
212     * rotation is by an angle phi about the z-axis, the second is by an angle
213     * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the
214     * z-axis (again).
215 tim 1569 */
216 tim 1586 Vector3<Real> toEulerAngles() {
217 tim 1606 Vector3<Real> myEuler;
218 tim 1883 Real phi;
219     Real theta;
220     Real psi;
221     Real ctheta;
222     Real stheta;
223 tim 1586
224     // set the tolerance for Euler angles and rotation elements
225    
226 tim 1606 theta = acos(std::min(1.0, std::max(-1.0,data_[2][2])));
227 tim 1586 ctheta = data_[2][2];
228     stheta = sqrt(1.0 - ctheta * ctheta);
229    
230     // when sin(theta) is close to 0, we need to consider singularity
231     // In this case, we can assign an arbitary value to phi (or psi), and then determine
232     // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0
233     // in cases of singularity.
234     // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
235     // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never
236     // change the sign of both of the parameters passed to atan2.
237    
238     if (fabs(stheta) <= oopse::epsilon){
239     psi = 0.0;
240     phi = atan2(-data_[1][0], data_[0][0]);
241     }
242     // we only have one unique solution
243     else{
244     phi = atan2(data_[2][0], -data_[2][1]);
245     psi = atan2(data_[0][2], data_[1][2]);
246     }
247    
248     //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
249     if (phi < 0)
250     phi += M_PI;
251    
252     if (psi < 0)
253     psi += M_PI;
254    
255     myEuler[0] = phi;
256     myEuler[1] = theta;
257     myEuler[2] = psi;
258    
259     return myEuler;
260     }
261 tim 1563
262 tim 1594 /** Returns the determinant of this matrix. */
263     Real determinant() const {
264     Real x,y,z;
265    
266     x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]);
267     y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]);
268     z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]);
269    
270     return(x + y + z);
271     }
272 tim 1822
273     /** Returns the trace of this matrix. */
274     Real trace() const {
275     return data_[0][0] + data_[1][1] + data_[2][2];
276     }
277 tim 1594
278 tim 1563 /**
279     * Sets the value of this matrix to the inversion of itself.
280     * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
281     * implementation of inverse in SquareMatrix class
282     */
283 tim 1695 SquareMatrix3<Real> inverse() const {
284 tim 1594 SquareMatrix3<Real> m;
285     double det = determinant();
286     if (fabs(det) <= oopse::epsilon) {
287     //"The method was called on a matrix with |determinant| <= 1e-6.",
288     //"This is a runtime or a programming error in your application.");
289     }
290 tim 1563
291 tim 1594 m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1];
292     m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2];
293     m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0];
294     m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1];
295     m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2];
296     m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0];
297     m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1];
298     m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2];
299     m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0];
300    
301     m /= det;
302     return m;
303 tim 1592 }
304 tim 1616 /**
305     * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
306     * The eigenvectors (the columns of V) will be normalized.
307     * The eigenvectors are aligned optimally with the x, y, and z
308     * axes respectively.
309     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
310     * overwritten
311     * @param w will contain the eigenvalues of the matrix On return of this function
312     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
313     * normalized and mutually orthogonal.
314     * @warning a will be overwritten
315     */
316     static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
317     };
318     /*=========================================================================
319 tim 1569
320 tim 1616 Program: Visualization Toolkit
321     Module: $RCSfile: SquareMatrix3.hpp,v $
322 tim 1592
323 tim 1616 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
324     All rights reserved.
325     See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
326 tim 1594
327 tim 1616 This software is distributed WITHOUT ANY WARRANTY; without even
328     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
329     PURPOSE. See the above copyright notice for more information.
330 tim 1594
331 tim 1616 =========================================================================*/
332     template<typename Real>
333     void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
334     SquareMatrix3<Real>& v) {
335     int i,j,k,maxI;
336     Real tmp, maxVal;
337     Vector3<Real> v_maxI, v_k, v_j;
338 tim 1594
339 tim 1616 // diagonalize using Jacobi
340     jacobi(a, w, v);
341     // if all the eigenvalues are the same, return identity matrix
342     if (w[0] == w[1] && w[0] == w[2] ) {
343     v = SquareMatrix3<Real>::identity();
344     return;
345     }
346 tim 1594
347 tim 1616 // transpose temporarily, it makes it easier to sort the eigenvectors
348     v = v.transpose();
349    
350     // if two eigenvalues are the same, re-orthogonalize to optimally line
351     // up the eigenvectors with the x, y, and z axes
352     for (i = 0; i < 3; i++) {
353     if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
354     // find maximum element of the independant eigenvector
355     maxVal = fabs(v(i, 0));
356     maxI = 0;
357     for (j = 1; j < 3; j++) {
358     if (maxVal < (tmp = fabs(v(i, j)))){
359     maxVal = tmp;
360     maxI = j;
361     }
362     }
363    
364     // swap the eigenvector into its proper position
365     if (maxI != i) {
366     tmp = w(maxI);
367     w(maxI) = w(i);
368     w(i) = tmp;
369 tim 1594
370 tim 1616 v.swapRow(i, maxI);
371     }
372     // maximum element of eigenvector should be positive
373     if (v(maxI, maxI) < 0) {
374     v(maxI, 0) = -v(maxI, 0);
375     v(maxI, 1) = -v(maxI, 1);
376     v(maxI, 2) = -v(maxI, 2);
377     }
378 tim 1594
379 tim 1616 // re-orthogonalize the other two eigenvectors
380     j = (maxI+1)%3;
381     k = (maxI+2)%3;
382 tim 1594
383 tim 1616 v(j, 0) = 0.0;
384     v(j, 1) = 0.0;
385     v(j, 2) = 0.0;
386     v(j, j) = 1.0;
387 tim 1594
388 tim 1616 /** @todo */
389     v_maxI = v.getRow(maxI);
390     v_j = v.getRow(j);
391     v_k = cross(v_maxI, v_j);
392     v_k.normalize();
393     v_j = cross(v_k, v_maxI);
394     v.setRow(j, v_j);
395     v.setRow(k, v_k);
396 tim 1594
397    
398 tim 1616 // transpose vectors back to columns
399     v = v.transpose();
400     return;
401     }
402     }
403 tim 1594
404 tim 1616 // the three eigenvalues are different, just sort the eigenvectors
405     // to align them with the x, y, and z axes
406 tim 1594
407 tim 1616 // find the vector with the largest x element, make that vector
408     // the first vector
409     maxVal = fabs(v(0, 0));
410     maxI = 0;
411     for (i = 1; i < 3; i++) {
412     if (maxVal < (tmp = fabs(v(i, 0)))) {
413     maxVal = tmp;
414     maxI = i;
415     }
416     }
417 tim 1594
418 tim 1616 // swap eigenvalue and eigenvector
419     if (maxI != 0) {
420     tmp = w(maxI);
421     w(maxI) = w(0);
422     w(0) = tmp;
423     v.swapRow(maxI, 0);
424     }
425     // do the same for the y element
426     if (fabs(v(1, 1)) < fabs(v(2, 1))) {
427     tmp = w(2);
428     w(2) = w(1);
429     w(1) = tmp;
430     v.swapRow(2, 1);
431     }
432 tim 1594
433 tim 1616 // ensure that the sign of the eigenvectors is correct
434     for (i = 0; i < 2; i++) {
435     if (v(i, i) < 0) {
436     v(i, 0) = -v(i, 0);
437     v(i, 1) = -v(i, 1);
438     v(i, 2) = -v(i, 2);
439 tim 1592 }
440 tim 1616 }
441 tim 1563
442 tim 1616 // set sign of final eigenvector to ensure that determinant is positive
443     if (v.determinant() < 0) {
444     v(2, 0) = -v(2, 0);
445     v(2, 1) = -v(2, 1);
446     v(2, 2) = -v(2, 2);
447     }
448    
449     // transpose the eigenvectors back again
450     v = v.transpose();
451     return ;
452     }
453 tim 1695
454     /**
455     * Return the multiplication of two matrixes (m1 * m2).
456     * @return the multiplication of two matrixes
457     * @param m1 the first matrix
458     * @param m2 the second matrix
459     */
460     template<typename Real>
461     inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) {
462     SquareMatrix3<Real> result;
463    
464     for (unsigned int i = 0; i < 3; i++)
465     for (unsigned int j = 0; j < 3; j++)
466     for (unsigned int k = 0; k < 3; k++)
467     result(i, j) += m1(i, k) * m2(k, j);
468    
469     return result;
470     }
471    
472 tim 1804 template<typename Real>
473     inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) {
474     SquareMatrix3<Real> result;
475    
476     for (unsigned int i = 0; i < 3; i++) {
477     for (unsigned int j = 0; j < 3; j++) {
478     result(i, j) = v1[i] * v2[j];
479     }
480     }
481    
482     return result;
483     }
484    
485    
486 tim 1592 typedef SquareMatrix3<double> Mat3x3d;
487     typedef SquareMatrix3<double> RotMat3x3d;
488 tim 1586
489     } //namespace oopse
490     #endif // MATH_SQUAREMATRIX_HPP
491 tim 1616