ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-3.0/src/primitives/Torsion.cpp
Revision: 1782
Committed: Wed Nov 24 20:55:03 2004 UTC (19 years, 7 months ago) by tim
File size: 3209 byte(s)
Log Message:
types and primitives get built

File Contents

# Content
1 #include "primitives/Torsion.hpp"
2
3 namespace oopse {
4
5 Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4,
6 TorsionType *tt) :
7 atom1_(atom1),
8 atom2_(atom2),
9 atom3_(atom3),
10 atom4_(atom4) { }
11
12 void Torsion::calcForce() {
13 Vector3d pos1 = atom1_->getPos();
14 Vector3d pos2 = atom2_->getPos();
15 Vector3d pos3 = atom3_->getPos();
16 Vector3d pos4 = atom4_->getPos();
17
18 Vector3d r12 = pos1 - pos2;
19 Vector3d r23 = pos2 - pos3;
20 Vector3d r34 = pos3 - pos4;
21
22 // Calculate the cross products and distances
23 Vector3d A = cross(r12, r23);
24 double rA = A.length();
25 Vector3d B = cross(r23, r34);
26 double rB = B.length();
27 Vector3d C = cross(r23, A);
28 double rC = C.length();
29
30 A.normalize();
31 B.normalize();
32 C.normalize();
33
34 // Calculate the sin and cos
35 double cos_phi = dot(A, B) ;
36 double sin_phi = dot(C, B);
37
38 double dVdPhi;
39 torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi);
40
41 Vector3d f1;
42 Vector3d f2;
43 Vector3d f3;
44
45 // Next, we want to calculate the forces. In order
46 // to do that, we first need to figure out whether the
47 // sin or cos form will be more stable. For this,
48 // just look at the value of phi
49 if (fabs(sin_phi) > 0.1) {
50 // use the sin version to avoid 1/cos terms
51
52 Vector3d dcosdA = (cos_phi * A - B) /rA;
53 Vector3d dcosdB = (cos_phi * B - A) /rB;
54
55 double dVdcosPhi = dVdPhi / sin_phi;
56
57 f1 = dVdcosPhi * cross(r23, dcosdA);
58 f2 = dVdcosPhi * ( cross(r34, dcosdB) - cross(r12, dcosdA));
59 f3 = dVdcosPhi * cross(r23, dcosdB);
60
61 } else {
62 // This angle is closer to 0 or 180 than it is to
63 // 90, so use the cos version to avoid 1/sin terms
64
65 double dVdsinPhi = -dVdPhi /cos_phi;
66 Vector3d dsindB = (sin_phi * B - C) /rB;
67 Vector3d dsindC = (sin_phi * C - B) /rC;
68
69 f1.x() = dVdsinPhi*((r23.y()*r23.y() + r23.z()*r23.z())*dsindC.x() - r23.x()*r23.y()*dsindC.y() - r23.x()*r23.z()*dsindC.z());
70
71 f1.y() = dVdsinPhi*((r23.z()*r23.z() + r23.x()*r23.x())*dsindC.y() - r23.y()*r23.z()*dsindC.z() - r23.y()*r23.x()*dsindC.x());
72
73 f1.z() = dVdsinPhi*((r23.x()*r23.x() + r23.y()*r23.y())*dsindC.z() - r23.z()*r23.x()*dsindC.x() - r23.z()*r23.y()*dsindC.y());
74
75 f2.x() = dVdsinPhi*(-(r23.y()*r12.y() + r23.z()*r12.z())*dsindC.x() + (2.0*r23.x()*r12.y() - r12.x()*r23.y())*dsindC.y()
76 + (2.0*r23.x()*r12.z() - r12.x()*r23.z())*dsindC.z() + dsindB.z()*r34.y() - dsindB.y()*r34.z());
77
78 f2.y() = dVdsinPhi*(-(r23.z()*r12.z() + r23.x()*r12.x())*dsindC.y() + (2.0*r23.y()*r12.z() - r12.y()*r23.z())*dsindC.z()
79 + (2.0*r23.y()*r12.x() - r12.y()*r23.x())*dsindC.x() + dsindB.x()*r34.z() - dsindB.z()*r34.x());
80
81 f2.z() = dVdsinPhi*(-(r23.x()*r12.x() + r23.y()*r12.y())*dsindC.z() + (2.0*r23.z()*r12.x() - r12.z()*r23.x())*dsindC.x()
82 +(2.0*r23.z()*r12.y() - r12.z()*r23.y())*dsindC.y() + dsindB.y()*r34.x() - dsindB.x()*r34.y());
83
84 f3 = dVdsinPhi * cross(dsindB, r23);
85
86 }
87
88 atom1_->addFrc(f1);
89 atom2_->addFrc(f2 - f1);
90 atom3_->addFrc(f3 - f2);
91 atom4_->addFrc(-f3);
92 }
93
94 }