ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-4/src/brains/SimInfo.hpp
(Generate patch)

Comparing branches/new_design/OOPSE-4/src/brains/SimInfo.hpp (file contents):
Revision 1735 by tim, Fri Nov 12 17:40:03 2004 UTC vs.
Revision 1804 by tim, Tue Nov 30 19:58:25 2004 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 < *
24 < */
25 <
26 < /**
27 < * @file SimInfo.hpp
28 < * @author    tlin
29 < * @date  11/02/2004
30 < * @version 1.0
31 < */
32 <
33 < #ifndef BRAINS_SIMMODEL_HPP
34 < #define BRAINS_SIMMODEL_HPP
35 <
36 < #include <iostream>
37 < #include <vector>
38 < #include <utility>
39 <
40 < #include "brains/fSimulation.h"
41 < #include "primitives/Molecule.hpp"
42 < #include "types/MoleculeStamp.hpp"
43 < #include "utils/PropertyMap.hpp"
44 < #include "io/Globals.hpp"
45 <
46 < namespace oopse{
47 <
48 < /**
49 < * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
50 < * @brief As one of the heavy weight class of OOPSE, SimInfo
51 < * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
52 < * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
53 < * cutoff groups, constrains).
54 < * Another major change is the index. No matter single version or parallel version,  atoms and
55 < * rigid bodies have both global index and local index. Local index is not important to molecule as well as
56 < * cutoff group.
57 < */
58 < class SimInfo {
59 <    public:
60 <        typedef MoleculeIterator MoleculeIterator;
61 <
62 <        /**
63 <         * Constructor of SimInfo
64 <         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
65 <         * second element is the total number of molecules with the same molecule stamp in the system
66 <         * @param ff pointer of a concrete ForceField instance
67 <         * @param globals
68 <         * @note
69 <         * <p>
70 <         * The major change of SimInfo
71 <         * </p>
72 <         */
73 <        SimInfo(const std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* globals);
74 <        virtual ~SimInfo();
75 <
76 <        /**
77 <         * Adds a molecule
78 <         * @return return true if adding successfully, return false if the molecule is already in SimInfo
79 <         * @param mol molecule to be added
80 <         */
81 <        bool addMolecule(Molecule* mol);
82 <
83 <        /**
84 <         * Removes a molecule from SimInfo
85 <         * @return true if removing successfully, return false if molecule is not in this SimInfo
86 <         */
87 <        bool removeMolecule(Molecule* mol);
88 <
89 <        /** Returns the total number of molecules in the system. */
90 <        int getNGlobalMolecules() {
91 <            return nGlobalMols_;
92 <        }
93 <
94 <        /** Returns the total number of atoms in the system. */
95 <        int getNGlobalAtoms() {
96 <            return nGlobalAtoms_;
97 <        }
98 <
99 <        /** Returns the total number of cutoff groups in the system. */
100 <        int getNGlobalCutoffGroups() {
101 <            return nGlobalCutoffGroups_;
102 <        }
103 <        
104 <        /**
105 <         * Returns the number of local molecules.
106 <         * @return the number of local molecules
107 <         */
108 <        int getNMolecules() {
109 <            return molecules_.size();
110 <        }
111 <
112 <        /** Returns the number of local atoms */
113 <        unsigned int getNAtoms() {
114 <            return nAtoms_;
115 <        }
116 <
117 <        /** Returns the number of local bonds */        
118 <        unsigned int getNBonds(){
119 <            return nBonds_;
120 <        }
121 <
122 <        /** Returns the number of local bends */        
123 <        unsigned int getNBends() {
124 <            return nBends_;
125 <        }
126 <
127 <        /** Returns the number of local torsions */        
128 <        unsigned int getNTorsions() {
129 <            return nTorsions_;
130 <        }
131 <
132 <        /** Returns the number of local rigid bodies */        
133 <        unsigned int getNRigidBodies() {
134 <            return nRigidBodies_;
135 <        }
136 <
137 <        /** Returns the number of local integrable objects */
138 <        unsigned int getNIntegrableObjects() {
139 <            return nIntegrableObjects_;
140 <        }
141 <
142 <        /** Returns the number of local cutoff groups */
143 <        unsigned int getNCutoffGroups() {
144 <            return nCutoffGroups_;
145 <        }
146 <
147 <        /** Returns the total number of constraints in this SimInfo */
148 <        unsigned int getNConstraints() {
149 <            return nConstraints_;
150 <        }
151 <        
152 <        /**
153 <         * Returns the first molecule in this SimInfo and intialize the iterator.
154 <         * @return the first molecule, return NULL if there is not molecule in this SimInfo
155 <         * @param i the iterator of molecule array (user shouldn't change it)
156 <         */
157 <        Molecule* beginMolecule(MoleculeIterator& i);
158 <
159 <        /**
160 <          * Returns the next avaliable Molecule based on the iterator.
161 <          * @return the next avaliable molecule, return NULL if reaching the end of the array
162 <          * @param i the iterator of molecule array
163 <          */
164 <        Molecule* nextMolecule(MoleculeIterator& i);
165 <
166 <        /** Returns the number of degrees of freedom */
167 <        int getNdf() {
168 <            return ndf_;
169 <        }
170 <
171 <        /** Returns the number of raw degrees of freedom */
172 <        int getNdfRaw() {
173 <            return ndfRaw_;
174 <        }
175 <
176 <        /** Returns the number of translational degrees of freedom */
177 <        int getNdfTrans() {
178 <            return ndfTrans_;
179 <        }
180 <
181 <        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
182 <        
183 <        /** Returns the total number of z-constraint molecules in the system */
184 <        int getNZconstraint() {
185 <            return nZconstraint_;
186 <        }
187 <
188 <        /**
189 <         * Sets the number of z-constraint molecules in the system.
190 <         */
191 <        int setNZconstraint(int nZconstraint) {
192 <            nZconstraint_ = nZconstraint;
193 <        }
194 <        
195 <        /** Returns the snapshot manager. */
196 <        SnapshotManager* getSnapshotManager() {
197 <            return sman_;
198 <        }
199 <
200 <        /** Sets the snapshot manager. */
201 <        void setSnapshotManager(SnapshotManager* sman) {
202 <            sman_ = sman;
203 <        }
204 <
205 <        /** Returns the force field */
206 <        ForceField* getForceField() {
207 <            return forceField_;
208 <        }
209 <
210 <        Globals* getGlobals() {
211 <            return globals_;
212 <        }
213 <
214 <        /** Returns the velocity of center of mass of the whole system.*/
215 <        Vector3d getComVel();
216 <
217 <        /** Returns the center of the mass of the whole system.*/
218 <        Vector3d getCom();
219 <
220 <        /** Returns the seed (used for random number generator) */
221 <        int getSeed() {
222 <            return seed_;
223 <        }
224 <
225 <        /** Sets the seed*/
226 <        void setSeed(int seed) {
227 <            seed_ = seed;
228 <        }
229 <
230 <        /** main driver function to interact with fortran during the initialization and molecule migration */
231 <        void update();
232 <
233 <        /** Returns the local index manager */
234 <        LocalIndexManager* getLocalIndexManager() {
235 <            return &localIndexMan_;
236 <        }
237 <
238 <        int getMoleculeStampId(int globalIndex) {
239 <            //assert(globalIndex < molStampIds_.size())
240 <            return molStampIds_[globalIndex];
241 <        }
242 <
243 <        /** Returns the molecule stamp */
244 <        MoleculeStamp* getMoleculeStamp(int id) {
245 <            return moleculeStamps_[id];
246 <        }
247 <        
248 <        /**
249 <         * Finds a molecule with a specified global index
250 <         * @return a pointer point to found molecule
251 <         * @param index
252 <         */
253 <        Molecule* getMoleculeByGlobalIndex(int index) {
254 <            std::map<int, Molecule*> i;
255 <            i = molecules_.find(index);
256 <
257 <            return i != molecules_.end() ? i->second : NULL;
258 <        }
259 <
260 <        /** Calculate the maximum cutoff radius based on the atom types */
261 <        double calcMaxCutoffRadius();
262 <
263 <        double getRcut() {
264 <            return rcut_;
265 <        }
266 <        
267 <        void setRcut(double rcut) {
268 <            rcut_ = rcut;
269 <        }
270 <
271 <        double getRsw() {
272 <            return rsw_;
273 <        }
274 <        void setRsw(double rsw) {
275 <            rsw_ = rsw;
276 <        }
277 <        
278 <        std::string getFinalConfigFileName() {
279 <            return finalConfigFileName_;
280 <        }
281 <        
282 <        void setFinalConfigFileName(const std::string& fileName) {
283 <            finalConfigFileName_ = fileName;
284 <        }
285 <
286 <
287 <        std::string getDumpFileName() {
288 <            return dumpFileName_;
289 <        }
290 <        
291 <        void setDumpFileName(const std::string& fileName) {
292 <            dumpFileName_ = fileName;
293 <        }
294 <
295 <        std::string getStatFileName() {
296 <            return statFileName_;
297 <        }
298 <        
299 <        void setStatFileName(const std::string& fileName) {
300 <            statFileName_ = fileName;
301 <        }
302 <
303 <        /**
304 <         * Returns the pointer of internal globalGroupMembership_ array. This array will be filled by SimCreator class
305 <         * @see #SimCreator::setGlobalIndex
306 <         */  
307 <        int* getGlobalGroupMembershipPointer() {
308 <            return globalGroupMembership_[0];
309 <        }
310 <
311 <        /**
312 <         * Returns the pointer of internal globalMolMembership_ array. This array will be filled by SimCreator class
313 <         * @see #SimCreator::setGlobalIndex
314 <         */        
315 <        int* getGlobalMolMembershipPointer() {
316 <            return globalMolMembership_[0];
317 <        }
318 <        
319 <        //below functions are just forward functions
320 <        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
321 <        //the other hand, has-a relation need composing.
322 <        /**
323 <         * Adds property into property map
324 <         * @param genData GenericData to be added into PropertyMap
325 <         */
326 <        void addProperty(GenericData* genData);
327 <
328 <        /**
329 <         * Removes property from PropertyMap by name
330 <         * @param propName the name of property to be removed
331 <         */
332 <        void removeProperty(const std::string& propName);
333 <
334 <        /**
335 <         * clear all of the properties
336 <         */
337 <        void clearProperties();
338 <
339 <        /**
340 <         * Returns all names of properties
341 <         * @return all names of properties
342 <         */
343 <        std::vector<std::string> getPropertyNames();
344 <
345 <        /**
346 <         * Returns all of the properties in PropertyMap
347 <         * @return all of the properties in PropertyMap
348 <         */      
349 <        std::vector<GenericData*> getProperties();
350 <
351 <        /**
352 <         * Returns property
353 <         * @param propName name of property
354 <         * @return a pointer point to property with propName. If no property named propName
355 <         * exists, return NULL
356 <         */      
357 <        GenericData* getPropertyByName(const std::string& propName);
358 <                
359 <        friend std::ostream& operator <<(ostream& o, SimInfo& info);
360 <        
361 <    private:
362 <
363 <        
364 <        /** Returns the unique atom types of local processor in an array */
365 <        std::set<AtomType*> SimInfo::getUniqueAtomTypes();
366 <
367 <        /** fill up the simtype struct*/
368 <        void setupSimType();
369 <
370 <        /**
371 <         * Setup Fortran Simulation
372 <         * @see #setupFortranParallel
373 <         */
374 <        void setupFortranSim();
375 <
376 <        /** Calculates the number of degress of freedom in the whole system */
377 <        void calcNdf();
378 <        void calcNdfRaw();
379 <        void calcNdfTrans();
380 <
381 <        void addExcludePairs(Molecule* mol);
382 <        void removeExcludePairs(Molecule* mol);
383 <
384 <        /**
385 <         * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
386 <         * system.
387 <         */
388 <        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
389 <
390 <        std::map<int, Molecule*>  molecules_; /**< Molecule array */
391 <        
392 <        //degress of freedom
393 <        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
394 <        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
395 <        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
396 <        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
397 <        
398 <        //number of global objects
399 <        int nGlobalMols_;       /**< number of molecules in the system */
400 <        int nGlobalAtoms_;   /**< number of atoms in the system */
401 <        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
402 <
403 <        /**
404 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
405 <         * corresponding content is the global index of cutoff group this atom belong to.
406 <         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
407 <         */
408 <        std::vector<int> globalGroupMembership_;
409 <
410 <        /**
411 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
412 <         * corresponding content is the global index of molecule this atom belong to.
413 <         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
414 <         */
415 <        std::vector<int> globalMolMembership_;        
416 <
417 <        
418 <        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
419 <        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
420 <        
421 <        //number of local objects
422 <        int nAtoms_;                        /**< number of atoms in local processor */
423 <        int nBonds_;                        /**< number of bonds in local processor */
424 <        int nBends_;                        /**< number of bends in local processor */
425 <        int nTorsions_;                    /**< number of torsions in local processor */
426 <        int nRigidBodies_;              /**< number of rigid bodies in local processor */
427 <        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
428 <        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
429 <        int nConstraints_;              /**< number of constraints in local processors */
430 <
431 <        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
432 <        Exclude exclude_;
433 <        ForceField* forceField_;            
434 <        PropertyMap properties_;                  /**< Generic Property */
435 <        SnapshotManager* sman_;               /**< SnapshotManager */
436 <        Globals* globals_;
437 <        int seed_; /**< seed for random number generator */
438 <
439 <        /**
440 <         * The reason to have a local index manager is that when molecule is migrating to other processors,
441 <         * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
442 <         * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
443 <         * to make a efficient data moving plan.
444 <         */        
445 <        LocalIndexManager localIndexMan_;
446 <
447 <        //file names
448 <        std::string finalConfigFileName_;
449 <        std::string dumpFileName_;
450 <        std::string statFileName_;
451 <
452 <        double rcut_;       /**< cutoff radius*/
453 <        double rsw_;        /**< radius of switching function*/
454 <        
455 < #ifdef IS_MPI
456 <    //in Parallel version, we need MolToProc
457 <    public:
458 <                
459 <        /**
460 <         * Finds the processor where a molecule resides
461 <         * @return the id of the processor which contains the molecule
462 <         * @param globalIndex global Index of the molecule
463 <         */
464 <        int getMolToProc(int globalIndex) {
465 <            //assert(globalIndex < molToProcMap_.size());
466 <            return molToProcMap_[globalIndex];
467 <        }
468 <
469 <        /**
470 <         * Returns the pointer of internal molToProcMap array. This array will be filled by SimCreator class
471 <         * @see #SimCreator::divideMolecules
472 <         */
473 <        int* getMolToProcMapPointer() {
474 <            return &molToProcMap_[0];
475 <        }
476 <        
477 <    private:
478 <
479 <        void setupFortranParallel();
480 <        
481 <        /**
482 <         * The size of molToProcMap_ is equal to total number of molecules in the system.
483 <         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
484 <         * once.
485 <         */        
486 <        std::vector<int> molToProcMap_;
487 < #endif
488 <
489 < };
490 <
491 < } //namespace oopse
492 < #endif //BRAINS_SIMMODEL_HPP
1 > /*
2 > * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 > *
4 > * Contact: oopse@oopse.org
5 > *
6 > * This program is free software; you can redistribute it and/or
7 > * modify it under the terms of the GNU Lesser General Public License
8 > * as published by the Free Software Foundation; either version 2.1
9 > * of the License, or (at your option) any later version.
10 > * All we ask is that proper credit is given for our work, which includes
11 > * - but is not limited to - adding the above copyright notice to the beginning
12 > * of your source code files, and to any copyright notice that you may distribute
13 > * with programs based on this work.
14 > *
15 > * This program is distributed in the hope that it will be useful,
16 > * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 > * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 > * GNU Lesser General Public License for more details.
19 > *
20 > * You should have received a copy of the GNU Lesser General Public License
21 > * along with this program; if not, write to the Free Software
22 > * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 > *
24 > */
25 >
26 > /**
27 > * @file SimInfo.hpp
28 > * @author    tlin
29 > * @date  11/02/2004
30 > * @version 1.0
31 > */
32 >
33 > #ifndef BRAINS_SIMMODEL_HPP
34 > #define BRAINS_SIMMODEL_HPP
35 >
36 > #include <iostream>
37 > #include <set>
38 > #include <utility>
39 > #include <vector>
40 >
41 > #include "brains/Exclude.hpp"
42 > #include "io/Globals.hpp"
43 > #include "math/Vector3.hpp"
44 > #include "types/MoleculeStamp.hpp"
45 > #include "UseTheForce/ForceField.hpp"
46 > #include "utils/PropertyMap.hpp"
47 > #include "utils/LocalIndexManager.hpp"
48 >
49 > //another nonsense macro declaration
50 > #define __C
51 > #include "brains/fSimulation.h"
52 >
53 > namespace oopse{
54 >
55 > //forward decalration
56 > class SnapshotManager;
57 > class Molecule;
58 >
59 > /**
60 > * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
61 > * @brief As one of the heavy weight class of OOPSE, SimInfo
62 > * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
63 > * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
64 > * cutoff groups, constrains).
65 > * Another major change is the index. No matter single version or parallel version,  atoms and
66 > * rigid bodies have both global index and local index. Local index is not important to molecule as well as
67 > * cutoff group.
68 > */
69 > class SimInfo {
70 >    public:
71 >        typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
72 >
73 >        /**
74 >         * Constructor of SimInfo
75 >         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
76 >         * second element is the total number of molecules with the same molecule stamp in the system
77 >         * @param ff pointer of a concrete ForceField instance
78 >         * @param globals
79 >         * @note
80 >         */
81 >        SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* globals);
82 >        virtual ~SimInfo();
83 >
84 >        /**
85 >         * Adds a molecule
86 >         * @return return true if adding successfully, return false if the molecule is already in SimInfo
87 >         * @param mol molecule to be added
88 >         */
89 >        bool addMolecule(Molecule* mol);
90 >
91 >        /**
92 >         * Removes a molecule from SimInfo
93 >         * @return true if removing successfully, return false if molecule is not in this SimInfo
94 >         */
95 >        bool removeMolecule(Molecule* mol);
96 >
97 >        /** Returns the total number of molecules in the system. */
98 >        int getNGlobalMolecules() {
99 >            return nGlobalMols_;
100 >        }
101 >
102 >        /** Returns the total number of atoms in the system. */
103 >        int getNGlobalAtoms() {
104 >            return nGlobalAtoms_;
105 >        }
106 >
107 >        /** Returns the total number of cutoff groups in the system. */
108 >        int getNGlobalCutoffGroups() {
109 >            return nGlobalCutoffGroups_;
110 >        }
111 >
112 >        /**
113 >         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
114 >         * of atoms which do not belong to the rigid bodies) in the system
115 >         */
116 >        int getNGlobalIntegrableObjects() {
117 >            return nGlobalIntegrableObjects_;
118 >        }
119 >        
120 >        /**
121 >         * Returns the number of local molecules.
122 >         * @return the number of local molecules
123 >         */
124 >        int getNMolecules() {
125 >            return molecules_.size();
126 >        }
127 >
128 >        /** Returns the number of local atoms */
129 >        unsigned int getNAtoms() {
130 >            return nAtoms_;
131 >        }
132 >
133 >        /** Returns the number of local bonds */        
134 >        unsigned int getNBonds(){
135 >            return nBonds_;
136 >        }
137 >
138 >        /** Returns the number of local bends */        
139 >        unsigned int getNBends() {
140 >            return nBends_;
141 >        }
142 >
143 >        /** Returns the number of local torsions */        
144 >        unsigned int getNTorsions() {
145 >            return nTorsions_;
146 >        }
147 >
148 >        /** Returns the number of local rigid bodies */        
149 >        unsigned int getNRigidBodies() {
150 >            return nRigidBodies_;
151 >        }
152 >
153 >        /** Returns the number of local integrable objects */
154 >        unsigned int getNIntegrableObjects() {
155 >            return nIntegrableObjects_;
156 >        }
157 >
158 >        /** Returns the number of local cutoff groups */
159 >        unsigned int getNCutoffGroups() {
160 >            return nCutoffGroups_;
161 >        }
162 >
163 >        /** Returns the total number of constraints in this SimInfo */
164 >        unsigned int getNConstraints() {
165 >            return nConstraints_;
166 >        }
167 >        
168 >        /**
169 >         * Returns the first molecule in this SimInfo and intialize the iterator.
170 >         * @return the first molecule, return NULL if there is not molecule in this SimInfo
171 >         * @param i the iterator of molecule array (user shouldn't change it)
172 >         */
173 >        Molecule* beginMolecule(MoleculeIterator& i);
174 >
175 >        /**
176 >          * Returns the next avaliable Molecule based on the iterator.
177 >          * @return the next avaliable molecule, return NULL if reaching the end of the array
178 >          * @param i the iterator of molecule array
179 >          */
180 >        Molecule* nextMolecule(MoleculeIterator& i);
181 >
182 >        /** Returns the number of degrees of freedom */
183 >        int getNdf() {
184 >            return ndf_;
185 >        }
186 >
187 >        /** Returns the number of raw degrees of freedom */
188 >        int getNdfRaw() {
189 >            return ndfRaw_;
190 >        }
191 >
192 >        /** Returns the number of translational degrees of freedom */
193 >        int getNdfTrans() {
194 >            return ndfTrans_;
195 >        }
196 >
197 >        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
198 >        
199 >        /** Returns the total number of z-constraint molecules in the system */
200 >        int getNZconstraint() {
201 >            return nZconstraint_;
202 >        }
203 >
204 >        /**
205 >         * Sets the number of z-constraint molecules in the system.
206 >         */
207 >        void setNZconstraint(int nZconstraint) {
208 >            nZconstraint_ = nZconstraint;
209 >        }
210 >        
211 >        /** Returns the snapshot manager. */
212 >        SnapshotManager* getSnapshotManager() {
213 >            return sman_;
214 >        }
215 >
216 >        /** Sets the snapshot manager. */
217 >        void setSnapshotManager(SnapshotManager* sman) {
218 >            sman_ = sman;
219 >        }
220 >
221 >        /** Returns the force field */
222 >        ForceField* getForceField() {
223 >            return forceField_;
224 >        }
225 >
226 >        Globals* getGlobals() {
227 >            return globals_;
228 >        }
229 >
230 >        /** Returns the velocity of center of mass of the whole system.*/
231 >        Vector3d getComVel();
232 >
233 >        /** Returns the center of the mass of the whole system.*/
234 >        Vector3d getCom();
235 >
236 >        /** Returns the seed (used for random number generator) */
237 >        int getSeed() {
238 >            return seed_;
239 >        }
240 >
241 >        /** Sets the seed*/
242 >        void setSeed(int seed) {
243 >            seed_ = seed;
244 >        }
245 >
246 >        /** main driver function to interact with fortran during the initialization and molecule migration */
247 >        void update();
248 >
249 >        /** Returns the local index manager */
250 >        LocalIndexManager* getLocalIndexManager() {
251 >            return &localIndexMan_;
252 >        }
253 >
254 >        int getMoleculeStampId(int globalIndex) {
255 >            //assert(globalIndex < molStampIds_.size())
256 >            return molStampIds_[globalIndex];
257 >        }
258 >
259 >        /** Returns the molecule stamp */
260 >        MoleculeStamp* getMoleculeStamp(int id) {
261 >            return moleculeStamps_[id];
262 >        }
263 >        
264 >        /**
265 >         * Finds a molecule with a specified global index
266 >         * @return a pointer point to found molecule
267 >         * @param index
268 >         */
269 >        Molecule* getMoleculeByGlobalIndex(int index) {
270 >            MoleculeIterator i;
271 >            i = molecules_.find(index);
272 >
273 >            return i != molecules_.end() ? i->second : NULL;
274 >        }
275 >
276 >        /** Calculate the maximum cutoff radius based on the atom types */
277 >        double calcMaxCutoffRadius();
278 >
279 >        double getRcut() {
280 >            return rcut_;
281 >        }
282 >
283 >        double getRsw() {
284 >            return rsw_;
285 >        }
286 >        
287 >        std::string getFinalConfigFileName() {
288 >            return finalConfigFileName_;
289 >        }
290 >        
291 >        void setFinalConfigFileName(const std::string& fileName) {
292 >            finalConfigFileName_ = fileName;
293 >        }
294 >
295 >        std::string getDumpFileName() {
296 >            return dumpFileName_;
297 >        }
298 >        
299 >        void setDumpFileName(const std::string& fileName) {
300 >            dumpFileName_ = fileName;
301 >        }
302 >
303 >        std::string getStatFileName() {
304 >            return statFileName_;
305 >        }
306 >        
307 >        void setStatFileName(const std::string& fileName) {
308 >            statFileName_ = fileName;
309 >        }
310 >
311 >        /**
312 >         * Returns the pointer of internal globalGroupMembership_ array. This array will be filled by SimCreator class
313 >         * @see #SimCreator::setGlobalIndex
314 >         */  
315 >        int* getGlobalGroupMembershipPointer() {
316 >            return &globalGroupMembership_[0];
317 >        }
318 >
319 >        /**
320 >         * Returns the pointer of internal globalMolMembership_ array. This array will be filled by SimCreator class
321 >         * @see #SimCreator::setGlobalIndex
322 >         */        
323 >        int* getGlobalMolMembershipPointer() {
324 >            return &globalMolMembership_[0];
325 >        }
326 >
327 >
328 >        bool isFortranInitialized() {
329 >            return fortranInitialized_;
330 >        }
331 >        
332 >        //below functions are just forward functions
333 >        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
334 >        //the other hand, has-a relation need composing.
335 >        /**
336 >         * Adds property into property map
337 >         * @param genData GenericData to be added into PropertyMap
338 >         */
339 >        void addProperty(GenericData* genData);
340 >
341 >        /**
342 >         * Removes property from PropertyMap by name
343 >         * @param propName the name of property to be removed
344 >         */
345 >        void removeProperty(const std::string& propName);
346 >
347 >        /**
348 >         * clear all of the properties
349 >         */
350 >        void clearProperties();
351 >
352 >        /**
353 >         * Returns all names of properties
354 >         * @return all names of properties
355 >         */
356 >        std::vector<std::string> getPropertyNames();
357 >
358 >        /**
359 >         * Returns all of the properties in PropertyMap
360 >         * @return all of the properties in PropertyMap
361 >         */      
362 >        std::vector<GenericData*> getProperties();
363 >
364 >        /**
365 >         * Returns property
366 >         * @param propName name of property
367 >         * @return a pointer point to property with propName. If no property named propName
368 >         * exists, return NULL
369 >         */      
370 >        GenericData* getPropertyByName(const std::string& propName);
371 >                
372 >        friend std::ostream& operator <<(ostream& o, SimInfo& info);
373 >        
374 >    private:
375 >
376 >        
377 >        /** Returns the unique atom types of local processor in an array */
378 >        std::set<AtomType*> getUniqueAtomTypes();
379 >
380 >        /** fill up the simtype struct*/
381 >        void setupSimType();
382 >
383 >        /**
384 >         * Setup Fortran Simulation
385 >         * @see #setupFortranParallel
386 >         */
387 >        void setupFortranSim();
388 >
389 >        /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
390 >        void setupCutoff();
391 >
392 >        /** Calculates the number of degress of freedom in the whole system */
393 >        void calcNdf();
394 >        void calcNdfRaw();
395 >        void calcNdfTrans();
396 >
397 >        void addExcludePairs(Molecule* mol);
398 >        void removeExcludePairs(Molecule* mol);
399 >
400 >        /**
401 >         * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
402 >         * system.
403 >         */
404 >        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
405 >
406 >        std::map<int, Molecule*>  molecules_; /**< Molecule array */
407 >        
408 >        //degress of freedom
409 >        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
410 >        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
411 >        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
412 >        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
413 >        
414 >        //number of global objects
415 >        int nGlobalMols_;       /**< number of molecules in the system */
416 >        int nGlobalAtoms_;   /**< number of atoms in the system */
417 >        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
418 >        int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
419 >
420 >        /**
421 >         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
422 >         * corresponding content is the global index of cutoff group this atom belong to.
423 >         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
424 >         */
425 >        std::vector<int> globalGroupMembership_;
426 >
427 >        /**
428 >         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
429 >         * corresponding content is the global index of molecule this atom belong to.
430 >         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
431 >         */
432 >        std::vector<int> globalMolMembership_;        
433 >
434 >        
435 >        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
436 >        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
437 >        
438 >        //number of local objects
439 >        int nAtoms_;                        /**< number of atoms in local processor */
440 >        int nBonds_;                        /**< number of bonds in local processor */
441 >        int nBends_;                        /**< number of bends in local processor */
442 >        int nTorsions_;                    /**< number of torsions in local processor */
443 >        int nRigidBodies_;              /**< number of rigid bodies in local processor */
444 >        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
445 >        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
446 >        int nConstraints_;              /**< number of constraints in local processors */
447 >
448 >        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
449 >        Exclude exclude_;
450 >        ForceField* forceField_;            
451 >        PropertyMap properties_;                  /**< Generic Property */
452 >        SnapshotManager* sman_;               /**< SnapshotManager */
453 >        Globals* globals_;
454 >        int seed_; /**< seed for random number generator */
455 >
456 >        /**
457 >         * The reason to have a local index manager is that when molecule is migrating to other processors,
458 >         * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
459 >         * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
460 >         * to make a efficient data moving plan.
461 >         */        
462 >        LocalIndexManager localIndexMan_;
463 >
464 >        //file names
465 >        std::string finalConfigFileName_;
466 >        std::string dumpFileName_;
467 >        std::string statFileName_;
468 >
469 >        double rcut_;       /**< cutoff radius*/
470 >        double rsw_;        /**< radius of switching function*/
471 >
472 >        bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
473 >        
474 > #ifdef IS_MPI
475 >    //in Parallel version, we need MolToProc
476 >    public:
477 >                
478 >        /**
479 >         * Finds the processor where a molecule resides
480 >         * @return the id of the processor which contains the molecule
481 >         * @param globalIndex global Index of the molecule
482 >         */
483 >        int getMolToProc(int globalIndex) {
484 >            //assert(globalIndex < molToProcMap_.size());
485 >            return molToProcMap_[globalIndex];
486 >        }
487 >
488 >        /**
489 >         * Returns the pointer of internal molToProcMap array. This array will be filled by SimCreator class
490 >         * @see #SimCreator::divideMolecules
491 >         */
492 >        int* getMolToProcMapPointer() {
493 >            return &molToProcMap_[0];
494 >        }
495 >        
496 >    private:
497 >
498 >        void setupFortranParallel();
499 >        
500 >        /**
501 >         * The size of molToProcMap_ is equal to total number of molecules in the system.
502 >         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
503 >         * once.
504 >         */        
505 >        std::vector<int> molToProcMap_;
506 > #endif
507 >
508 > };
509 >
510 > } //namespace oopse
511 > #endif //BRAINS_SIMMODEL_HPP

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines