ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-4/src/integrators/Integrator.cpp
Revision: 1695
Committed: Mon Nov 1 22:52:57 2004 UTC (19 years, 8 months ago) by tim
File size: 19667 byte(s)
Log Message:
Molecule, Atom, DirectionalAtom, RigidBody and StuntDouble classes get compiled

File Contents

# Content
1 #include <iostream>
2 #include <stdlib.h>
3 #include <math.h>
4 #ifdef IS_MPI
5 #include "brains/mpiSimulation.hpp"
6 #include <unistd.h>
7 #endif //is_mpi
8
9 #ifdef PROFILE
10 #include "profiling/mdProfile.hpp"
11 #endif // profile
12
13 #include "integrators/Integrator.hpp"
14 #include "utils/simError.h"
15
16
17 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
18 ForceFields* the_ff){
19 info = theInfo;
20 myFF = the_ff;
21 isFirst = 1;
22
23 molecules = info->molecules;
24 nMols = info->n_mol;
25
26 // give a little love back to the SimInfo object
27
28 if (info->the_integrator != NULL){
29 delete info->the_integrator;
30 }
31
32 nAtoms = info->n_atoms;
33 integrableObjects = info->integrableObjects;
34
35
36 // check for constraints
37
38 constrainedA = NULL;
39 constrainedB = NULL;
40 constrainedDsqr = NULL;
41 moving = NULL;
42 moved = NULL;
43 oldPos = NULL;
44
45 nConstrained = 0;
46
47 checkConstraints();
48
49 }
50
51 template<typename T> Integrator<T>::~Integrator(){
52
53 if (nConstrained){
54 delete[] constrainedA;
55 delete[] constrainedB;
56 delete[] constrainedDsqr;
57 delete[] moving;
58 delete[] moved;
59 delete[] oldPos;
60 }
61
62 }
63
64
65 template<typename T> void Integrator<T>::checkConstraints(void){
66 isConstrained = 0;
67
68 Constraint* temp_con;
69 Constraint* dummy_plug;
70 temp_con = new Constraint[info->n_SRI];
71 nConstrained = 0;
72 int constrained = 0;
73
74 SRI** theArray;
75 for (int i = 0; i < nMols; i++){
76
77 theArray = (SRI * *) molecules[i].getMyBonds();
78 for (int j = 0; j < molecules[i].getNBonds(); j++){
79 constrained = theArray[j]->is_constrained();
80
81 if (constrained){
82 dummy_plug = theArray[j]->get_constraint();
83 temp_con[nConstrained].set_a(dummy_plug->get_a());
84 temp_con[nConstrained].set_b(dummy_plug->get_b());
85 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86
87 nConstrained++;
88 constrained = 0;
89 }
90 }
91
92 theArray = (SRI * *) molecules[i].getMyBends();
93 for (int j = 0; j < molecules[i].getNBends(); j++){
94 constrained = theArray[j]->is_constrained();
95
96 if (constrained){
97 dummy_plug = theArray[j]->get_constraint();
98 temp_con[nConstrained].set_a(dummy_plug->get_a());
99 temp_con[nConstrained].set_b(dummy_plug->get_b());
100 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101
102 nConstrained++;
103 constrained = 0;
104 }
105 }
106
107 theArray = (SRI * *) molecules[i].getMyTorsions();
108 for (int j = 0; j < molecules[i].getNTorsions(); j++){
109 constrained = theArray[j]->is_constrained();
110
111 if (constrained){
112 dummy_plug = theArray[j]->get_constraint();
113 temp_con[nConstrained].set_a(dummy_plug->get_a());
114 temp_con[nConstrained].set_b(dummy_plug->get_b());
115 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116
117 nConstrained++;
118 constrained = 0;
119 }
120 }
121 }
122
123
124 if (nConstrained > 0){
125 isConstrained = 1;
126
127 if (constrainedA != NULL)
128 delete[] constrainedA;
129 if (constrainedB != NULL)
130 delete[] constrainedB;
131 if (constrainedDsqr != NULL)
132 delete[] constrainedDsqr;
133
134 constrainedA = new int[nConstrained];
135 constrainedB = new int[nConstrained];
136 constrainedDsqr = new double[nConstrained];
137
138 for (int i = 0; i < nConstrained; i++){
139 constrainedA[i] = temp_con[i].get_a();
140 constrainedB[i] = temp_con[i].get_b();
141 constrainedDsqr[i] = temp_con[i].get_dsqr();
142 }
143
144
145 // save oldAtoms to check for lode balancing later on.
146
147 oldAtoms = nAtoms;
148
149 moving = new int[nAtoms];
150 moved = new int[nAtoms];
151
152 oldPos = new double[nAtoms * 3];
153 }
154
155 delete[] temp_con;
156 }
157
158
159 template<typename T> void Integrator<T>::integrate(void){
160
161 double runTime = info->run_time;
162 double sampleTime = info->sampleTime;
163 double statusTime = info->statusTime;
164 double thermalTime = info->thermalTime;
165 double resetTime = info->resetTime;
166
167 double difference;
168 double currSample;
169 double currThermal;
170 double currStatus;
171 double currReset;
172
173 int calcPot, calcStress;
174
175 tStats = new Thermo(info);
176 statOut = new StatWriter(info);
177 dumpOut = new DumpWriter(info);
178
179 atoms = info->atoms;
180
181 dt = info->dt;
182 dt2 = 0.5 * dt;
183
184 readyCheck();
185
186 // remove center of mass drift velocity (in case we passed in a configuration
187 // that was drifting
188 tStats->removeCOMdrift();
189
190 // initialize the retraints if necessary
191 if (info->useSolidThermInt && !info->useLiquidThermInt) {
192 myFF->initRestraints();
193 }
194
195 // initialize the forces before the first step
196
197 calcForce(1, 1);
198
199 //execute constraint algorithm to make sure at the very beginning the system is constrained
200 if(nConstrained){
201 preMove();
202 constrainA();
203 calcForce(1, 1);
204 constrainB();
205 }
206
207 if (info->setTemp){
208 thermalize();
209 }
210
211 calcPot = 0;
212 calcStress = 0;
213 currSample = sampleTime + info->getTime();
214 currThermal = thermalTime+ info->getTime();
215 currStatus = statusTime + info->getTime();
216 currReset = resetTime + info->getTime();
217
218 dumpOut->writeDump(info->getTime());
219 statOut->writeStat(info->getTime());
220
221
222 #ifdef IS_MPI
223 strcpy(checkPointMsg, "The integrator is ready to go.");
224 MPIcheckPoint();
225 #endif // is_mpi
226
227 while (info->getTime() < runTime && !stopIntegrator()){
228 difference = info->getTime() + dt - currStatus;
229 if (difference > 0 || fabs(difference) < 1e-4 ){
230 calcPot = 1;
231 calcStress = 1;
232 }
233
234 #ifdef PROFILE
235 startProfile( pro1 );
236 #endif
237
238 integrateStep(calcPot, calcStress);
239
240 #ifdef PROFILE
241 endProfile( pro1 );
242
243 startProfile( pro2 );
244 #endif // profile
245
246 info->incrTime(dt);
247
248 if (info->setTemp){
249 if (info->getTime() >= currThermal){
250 thermalize();
251 currThermal += thermalTime;
252 }
253 }
254
255 if (info->getTime() >= currSample){
256 dumpOut->writeDump(info->getTime());
257 currSample += sampleTime;
258 }
259
260 if (info->getTime() >= currStatus){
261 statOut->writeStat(info->getTime());
262 calcPot = 0;
263 calcStress = 0;
264 currStatus += statusTime;
265 }
266
267 if (info->resetIntegrator){
268 if (info->getTime() >= currReset){
269 this->resetIntegrator();
270 currReset += resetTime;
271 }
272 }
273
274 #ifdef PROFILE
275 endProfile( pro2 );
276 #endif //profile
277
278 #ifdef IS_MPI
279 strcpy(checkPointMsg, "successfully took a time step.");
280 MPIcheckPoint();
281 #endif // is_mpi
282 }
283
284 dumpOut->writeFinal(info->getTime());
285
286 // dump out a file containing the omega values for the final configuration
287 if (info->useSolidThermInt && !info->useLiquidThermInt)
288 myFF->dumpzAngle();
289
290
291 delete dumpOut;
292 delete statOut;
293 }
294
295 template<typename T> void Integrator<T>::integrateStep(int calcPot,
296 int calcStress){
297 // Position full step, and velocity half step
298
299 #ifdef PROFILE
300 startProfile(pro3);
301 #endif //profile
302
303 //save old state (position, velocity etc)
304 preMove();
305 #ifdef PROFILE
306 endProfile(pro3);
307
308 startProfile(pro4);
309 #endif // profile
310
311 moveA();
312
313 #ifdef PROFILE
314 endProfile(pro4);
315
316 startProfile(pro5);
317 #endif//profile
318
319
320 #ifdef IS_MPI
321 strcpy(checkPointMsg, "Succesful moveA\n");
322 MPIcheckPoint();
323 #endif // is_mpi
324
325 // calc forces
326 calcForce(calcPot, calcStress);
327
328 #ifdef IS_MPI
329 strcpy(checkPointMsg, "Succesful doForces\n");
330 MPIcheckPoint();
331 #endif // is_mpi
332
333 #ifdef PROFILE
334 endProfile( pro5 );
335
336 startProfile( pro6 );
337 #endif //profile
338
339 // finish the velocity half step
340
341 moveB();
342
343 #ifdef PROFILE
344 endProfile(pro6);
345 #endif // profile
346
347 #ifdef IS_MPI
348 strcpy(checkPointMsg, "Succesful moveB\n");
349 MPIcheckPoint();
350 #endif // is_mpi
351 }
352
353
354 template<typename T> void Integrator<T>::moveA(void){
355 size_t i, j;
356 DirectionalAtom* dAtom;
357 Vector3d Tb;
358 Vector3d ji;
359 Vector3d vel;
360 Vector3d pos;
361 Vector3d frc;
362 double mass;
363 double omega;
364
365 for (i = 0; i < integrableObjects.size() ; i++){
366 vel = integrableObjects[i]->getVel();
367 pos = integrableObjects[i]->getPos();
368 integrableObjects[i]->getFrc(frc);
369
370 mass = integrableObjects[i]->getMass();
371
372 for (j = 0; j < 3; j++){
373 // velocity half step
374 vel[j] += (dt2 * frc[j] / mass) * eConvert;
375 // position whole step
376 pos[j] += dt * vel[j];
377 }
378
379 integrableObjects[i]->setVel(vel);
380 integrableObjects[i]->setPos(pos);
381
382 if (integrableObjects[i]->isDirectional()){
383
384 // get and convert the torque to body frame
385
386 Tb = integrableObjects[i]->getTrq();
387 integrableObjects[i]->lab2Body(Tb);
388
389 // get the angular momentum, and propagate a half step
390
391 ji = integrableObjects[i]->getJ();
392
393 for (j = 0; j < 3; j++)
394 ji[j] += (dt2 * Tb[j]) * eConvert;
395
396 this->rotationPropagation( integrableObjects[i], ji );
397
398 integrableObjects[i]->setJ(ji);
399 }
400 }
401
402 if(nConstrained)
403 constrainA();
404 }
405
406
407 template<typename T> void Integrator<T>::moveB(void){
408 int i, j;
409 double Tb[3], ji[3];
410 double vel[3], frc[3];
411 double mass;
412
413 for (i = 0; i < integrableObjects.size(); i++){
414 vel = integrableObjects[i]->getVel();
415 integrableObjects[i]->getFrc(frc);
416
417 mass = integrableObjects[i]->getMass();
418
419 // velocity half step
420 for (j = 0; j < 3; j++)
421 vel[j] += (dt2 * frc[j] / mass) * eConvert;
422
423 integrableObjects[i]->setVel(vel);
424
425 if (integrableObjects[i]->isDirectional()){
426
427 // get and convert the torque to body frame
428
429 Tb = integrableObjects[i]->getTrq();
430 integrableObjects[i]->lab2Body(Tb);
431
432 // get the angular momentum, and propagate a half step
433
434 ji = integrableObjects[i]->getJ();
435
436 for (j = 0; j < 3; j++)
437 ji[j] += (dt2 * Tb[j]) * eConvert;
438
439
440 integrableObjects[i]->setJ(ji);
441 }
442 }
443
444 if(nConstrained)
445 constrainB();
446 }
447
448
449 template<typename T> void Integrator<T>::preMove(void){
450 int i, j;
451 double pos[3];
452
453 if (nConstrained){
454 for (i = 0; i < nAtoms; i++){
455 pos = atoms[i]->getPos();
456
457 for (j = 0; j < 3; j++){
458 oldPos[3 * i + j] = pos[j];
459 }
460 }
461 }
462 }
463
464 template<typename T> void Integrator<T>::constrainA(){
465 int i, j;
466 int done;
467 double posA[3], posB[3];
468 double velA[3], velB[3];
469 double pab[3];
470 double rab[3];
471 int a, b, ax, ay, az, bx, by, bz;
472 double rma, rmb;
473 double dx, dy, dz;
474 double rpab;
475 double rabsq, pabsq, rpabsq;
476 double diffsq;
477 double gab;
478 int iteration;
479
480 for (i = 0; i < nAtoms; i++){
481 moving[i] = 0;
482 moved[i] = 1;
483 }
484
485 iteration = 0;
486 done = 0;
487 while (!done && (iteration < maxIteration)){
488 done = 1;
489 for (i = 0; i < nConstrained; i++){
490 a = constrainedA[i];
491 b = constrainedB[i];
492
493 ax = (a * 3) + 0;
494 ay = (a * 3) + 1;
495 az = (a * 3) + 2;
496
497 bx = (b * 3) + 0;
498 by = (b * 3) + 1;
499 bz = (b * 3) + 2;
500
501 if (moved[a] || moved[b]){
502 posA = atoms[a]->getPos();
503 posB = atoms[b]->getPos();
504
505 for (j = 0; j < 3; j++)
506 pab[j] = posA[j] - posB[j];
507
508 //periodic boundary condition
509
510 info->wrapVector(pab);
511
512 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
513
514 rabsq = constrainedDsqr[i];
515 diffsq = rabsq - pabsq;
516
517 // the original rattle code from alan tidesley
518 if (fabs(diffsq) > (tol * rabsq * 2)){
519 rab[0] = oldPos[ax] - oldPos[bx];
520 rab[1] = oldPos[ay] - oldPos[by];
521 rab[2] = oldPos[az] - oldPos[bz];
522
523 info->wrapVector(rab);
524
525 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
526
527 rpabsq = rpab * rpab;
528
529
530 if (rpabsq < (rabsq * -diffsq)){
531 #ifdef IS_MPI
532 a = atoms[a]->getGlobalIndex();
533 b = atoms[b]->getGlobalIndex();
534 #endif //is_mpi
535 sprintf(painCave.errMsg,
536 "Constraint failure in constrainA at atom %d and %d.\n", a,
537 b);
538 painCave.isFatal = 1;
539 simError();
540 }
541
542 rma = 1.0 / atoms[a]->getMass();
543 rmb = 1.0 / atoms[b]->getMass();
544
545 gab = diffsq / (2.0 * (rma + rmb) * rpab);
546
547 dx = rab[0] * gab;
548 dy = rab[1] * gab;
549 dz = rab[2] * gab;
550
551 posA[0] += rma * dx;
552 posA[1] += rma * dy;
553 posA[2] += rma * dz;
554
555 atoms[a]->setPos(posA);
556
557 posB[0] -= rmb * dx;
558 posB[1] -= rmb * dy;
559 posB[2] -= rmb * dz;
560
561 atoms[b]->setPos(posB);
562
563 dx = dx / dt;
564 dy = dy / dt;
565 dz = dz / dt;
566
567 velA = atoms[a]->getVel();
568
569 velA[0] += rma * dx;
570 velA[1] += rma * dy;
571 velA[2] += rma * dz;
572
573 atoms[a]->setVel(velA);
574
575 velB = atoms[b]->getVel();
576
577 velB[0] -= rmb * dx;
578 velB[1] -= rmb * dy;
579 velB[2] -= rmb * dz;
580
581 atoms[b]->setVel(velB);
582
583 moving[a] = 1;
584 moving[b] = 1;
585 done = 0;
586 }
587 }
588 }
589
590 for (i = 0; i < nAtoms; i++){
591 moved[i] = moving[i];
592 moving[i] = 0;
593 }
594
595 iteration++;
596 }
597
598 if (!done){
599 sprintf(painCave.errMsg,
600 "Constraint failure in constrainA, too many iterations: %d\n",
601 iteration);
602 painCave.isFatal = 1;
603 simError();
604 }
605
606 }
607
608 template<typename T> void Integrator<T>::constrainB(void){
609 int i, j;
610 int done;
611 double posA[3], posB[3];
612 double velA[3], velB[3];
613 double vxab, vyab, vzab;
614 double rab[3];
615 int a, b, ax, ay, az, bx, by, bz;
616 double rma, rmb;
617 double dx, dy, dz;
618 double rvab;
619 double gab;
620 int iteration;
621
622 for (i = 0; i < nAtoms; i++){
623 moving[i] = 0;
624 moved[i] = 1;
625 }
626
627 done = 0;
628 iteration = 0;
629 while (!done && (iteration < maxIteration)){
630 done = 1;
631
632 for (i = 0; i < nConstrained; i++){
633 a = constrainedA[i];
634 b = constrainedB[i];
635
636 ax = (a * 3) + 0;
637 ay = (a * 3) + 1;
638 az = (a * 3) + 2;
639
640 bx = (b * 3) + 0;
641 by = (b * 3) + 1;
642 bz = (b * 3) + 2;
643
644 if (moved[a] || moved[b]){
645 velA = atoms[a]->getVel();
646 velB = atoms[b]->getVel();
647
648 vxab = velA[0] - velB[0];
649 vyab = velA[1] - velB[1];
650 vzab = velA[2] - velB[2];
651
652 posA = atoms[a]->getPos();
653 posB = atoms[b]->getPos();
654
655 for (j = 0; j < 3; j++)
656 rab[j] = posA[j] - posB[j];
657
658 info->wrapVector(rab);
659
660 rma = 1.0 / atoms[a]->getMass();
661 rmb = 1.0 / atoms[b]->getMass();
662
663 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
664
665 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
666
667 if (fabs(gab) > tol){
668 dx = rab[0] * gab;
669 dy = rab[1] * gab;
670 dz = rab[2] * gab;
671
672 velA[0] += rma * dx;
673 velA[1] += rma * dy;
674 velA[2] += rma * dz;
675
676 atoms[a]->setVel(velA);
677
678 velB[0] -= rmb * dx;
679 velB[1] -= rmb * dy;
680 velB[2] -= rmb * dz;
681
682 atoms[b]->setVel(velB);
683
684 moving[a] = 1;
685 moving[b] = 1;
686 done = 0;
687 }
688 }
689 }
690
691 for (i = 0; i < nAtoms; i++){
692 moved[i] = moving[i];
693 moving[i] = 0;
694 }
695
696 iteration++;
697 }
698
699 if (!done){
700 sprintf(painCave.errMsg,
701 "Constraint failure in constrainB, too many iterations: %d\n",
702 iteration);
703 painCave.isFatal = 1;
704 simError();
705 }
706 }
707
708 template<typename T> void Integrator<T>::rotationPropagation
709 ( StuntDouble* sd, double ji[3] ){
710
711 double angle;
712 double A[3][3], I[3][3];
713 int i, j, k;
714
715 // use the angular velocities to propagate the rotation matrix a
716 // full time step
717
718 sd->getA(A);
719 sd->getI(I);
720
721 if (sd->isLinear()) {
722 i = sd->linearAxis();
723 j = (i+1)%3;
724 k = (i+2)%3;
725
726 angle = dt2 * ji[j] / I[j][j];
727 this->rotate( k, i, angle, ji, A );
728
729 angle = dt * ji[k] / I[k][k];
730 this->rotate( i, j, angle, ji, A);
731
732 angle = dt2 * ji[j] / I[j][j];
733 this->rotate( k, i, angle, ji, A );
734
735 } else {
736 // rotate about the x-axis
737 angle = dt2 * ji[0] / I[0][0];
738 this->rotate( 1, 2, angle, ji, A );
739
740 // rotate about the y-axis
741 angle = dt2 * ji[1] / I[1][1];
742 this->rotate( 2, 0, angle, ji, A );
743
744 // rotate about the z-axis
745 angle = dt * ji[2] / I[2][2];
746 sd->addZangle(angle);
747 this->rotate( 0, 1, angle, ji, A);
748
749 // rotate about the y-axis
750 angle = dt2 * ji[1] / I[1][1];
751 this->rotate( 2, 0, angle, ji, A );
752
753 // rotate about the x-axis
754 angle = dt2 * ji[0] / I[0][0];
755 this->rotate( 1, 2, angle, ji, A );
756
757 }
758 sd->setA( A );
759 }
760
761 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
762 double angle, double ji[3],
763 double A[3][3]){
764 int i, j, k;
765 double sinAngle;
766 double cosAngle;
767 double angleSqr;
768 double angleSqrOver4;
769 double top, bottom;
770 double rot[3][3];
771 double tempA[3][3];
772 double tempJ[3];
773
774 // initialize the tempA
775
776 for (i = 0; i < 3; i++){
777 for (j = 0; j < 3; j++){
778 tempA[j][i] = A[i][j];
779 }
780 }
781
782 // initialize the tempJ
783
784 for (i = 0; i < 3; i++)
785 tempJ[i] = ji[i];
786
787 // initalize rot as a unit matrix
788
789 rot[0][0] = 1.0;
790 rot[0][1] = 0.0;
791 rot[0][2] = 0.0;
792
793 rot[1][0] = 0.0;
794 rot[1][1] = 1.0;
795 rot[1][2] = 0.0;
796
797 rot[2][0] = 0.0;
798 rot[2][1] = 0.0;
799 rot[2][2] = 1.0;
800
801 // use a small angle aproximation for sin and cosine
802
803 angleSqr = angle * angle;
804 angleSqrOver4 = angleSqr / 4.0;
805 top = 1.0 - angleSqrOver4;
806 bottom = 1.0 + angleSqrOver4;
807
808 cosAngle = top / bottom;
809 sinAngle = angle / bottom;
810
811 rot[axes1][axes1] = cosAngle;
812 rot[axes2][axes2] = cosAngle;
813
814 rot[axes1][axes2] = sinAngle;
815 rot[axes2][axes1] = -sinAngle;
816
817 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
818
819 for (i = 0; i < 3; i++){
820 ji[i] = 0.0;
821 for (k = 0; k < 3; k++){
822 ji[i] += rot[i][k] * tempJ[k];
823 }
824 }
825
826 // rotate the Rotation matrix acording to:
827 // A[][] = A[][] * transpose(rot[][])
828
829
830 // NOte for as yet unknown reason, we are performing the
831 // calculation as:
832 // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
833
834 for (i = 0; i < 3; i++){
835 for (j = 0; j < 3; j++){
836 A[j][i] = 0.0;
837 for (k = 0; k < 3; k++){
838 A[j][i] += tempA[i][k] * rot[j][k];
839 }
840 }
841 }
842 }
843
844 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
845 myFF->doForces(calcPot, calcStress);
846 }
847
848 template<typename T> void Integrator<T>::thermalize(){
849 tStats->velocitize();
850 }
851
852 template<typename T> double Integrator<T>::getConservedQuantity(void){
853 return tStats->getTotalE();
854 }
855 template<typename T> string Integrator<T>::getAdditionalParameters(void){
856 //By default, return a null string
857 //The reason we use string instead of char* is that if we use char*, we will
858 //return a pointer point to local variable which might cause problem
859 return string();
860 }