ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new_design/OOPSE-4/src/integrators/NVT.cpp
(Generate patch)

Comparing branches/new_design/OOPSE-4/src/integrators/NVT.cpp (file contents):
Revision 1701 by tim, Wed Nov 3 16:08:43 2004 UTC vs.
Revision 1765 by tim, Mon Nov 22 20:55:52 2004 UTC

# Line 1 | Line 1
1 < #include <math.h>
2 <
3 < #include "primitives/Atom.hpp"
4 < #include "primitives/SRI.hpp"
5 < #include "primitives/AbstractClasses.hpp"
6 < #include "brains/SimInfo.hpp"
7 < #include "UseTheForce/ForceFields.hpp"
8 < #include "brains/Thermo.hpp"
9 < #include "io/ReadWrite.hpp"
10 < #include "integrators/Integrator.hpp"
11 < #include "utils/simError.h"
12 <
13 <
14 < // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
15 <
16 < template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff):
17 <  T( theInfo, the_ff )
18 < {
19 <  GenericData* data;
20 <  DoubleGenericData * chiValue;
21 <  DoubleGenericData * integralOfChidtValue;
22 <
23 <  chiValue = NULL;
24 <  integralOfChidtValue = NULL;
25 <
26 <  chi = 0.0;
27 <  have_tau_thermostat = 0;
28 <  have_target_temp = 0;
29 <  have_chi_tolerance = 0;
30 <  integralOfChidt = 0.0;
31 <
32 <
33 <  if( theInfo->useInitXSstate ){
34 <
35 <    // retrieve chi and integralOfChidt from simInfo
36 <    data = info->getPropertyByName(CHIVALUE_ID);
37 <    if(data){
38 <      chiValue = dynamic_cast<DoubleGenericData*>(data);
39 <    }
40 <    
41 <    data = info->getPropertyByName(INTEGRALOFCHIDT_ID);
42 <    if(data){
43 <      integralOfChidtValue = dynamic_cast<DoubleGenericData*>(data);
44 <    }
45 <    
46 <    // chi and integralOfChidt should appear by pair
47 <    if(chiValue && integralOfChidtValue){
48 <      chi = chiValue->getData();
49 <      integralOfChidt = integralOfChidtValue->getData();
50 <    }
51 <  }
52 <
53 <  oldVel = new double[3*integrableObjects.size()];
54 <  oldJi = new double[3*integrableObjects.size()];
55 < }
56 <
57 < template<typename T> NVT<T>::~NVT() {
58 <  delete[] oldVel;
59 <  delete[] oldJi;
60 < }
61 <
62 < template<typename T> void NVT<T>::moveA() {
63 <
64 <  int i, j;
65 <  DirectionalAtom* dAtom;
66 <  Vector3d Tb;
67 <  Vector3d ji;
68 <  double mass;
69 <  Vector3d vel;
70 <  Vector3d pos;
71 <  Vector3d frc;
72 <
73 <  double instTemp;
74 <
75 <  // We need the temperature at time = t for the chi update below:
76 <
77 <  instTemp = tStats->getTemperature();
78 <
79 <  for( i=0; i < integrableObjects.size(); i++ ){
80 <
81 <    vel = integrableObjects[i]->getVel();
82 <    pos = integrableObjects[i]->getPos();
83 <    integrableObjects[i]->getFrc( frc );
84 <
85 <    mass = integrableObjects[i]->getMass();
86 <
87 <    for (j=0; j < 3; j++) {
88 <      // velocity half step  (use chi from previous step here):
89 <      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi);
90 <      // position whole step
91 <      pos[j] += dt * vel[j];
92 <    }
93 <
94 <    integrableObjects[i]->setVel( vel );
95 <    integrableObjects[i]->setPos( pos );
96 <
97 <    if( integrableObjects[i]->isDirectional() ){
98 <
99 <      // get and convert the torque to body frame
100 <
101 <      Tb = integrableObjects[i]->getTrq();
102 <      integrableObjects[i]->lab2Body( Tb );
103 <
104 <      // get the angular momentum, and propagate a half step
105 <
106 <      ji = integrableObjects[i]->getJ();
107 <
108 <      for (j=0; j < 3; j++)
109 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
110 <
111 <      this->rotationPropagation( integrableObjects[i], ji );
112 <
113 <      integrableObjects[i]->setJ( ji );
114 <    }
115 <  }
116 <  
117 <  if(nConstrained)
118 <    constrainA();
119 <
120 <  // Finally, evolve chi a half step (just like a velocity) using
121 <  // temperature at time t, not time t+dt/2
122 <
123 <  //std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n";
124 <  
125 <  chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat);
126 <  integralOfChidt += chi*dt2;
127 <
128 < }
129 <
130 < template<typename T> void NVT<T>::moveB( void ){
131 <  int i, j, k;
132 <  double Tb[3], ji[3];
133 <  double vel[3], frc[3];
134 <  double mass;
135 <  double instTemp;
136 <  double oldChi, prevChi;
137 <
138 <  // Set things up for the iteration:
139 <
140 <  oldChi = chi;
141 <
142 <  for( i=0; i < integrableObjects.size(); i++ ){
143 <
144 <    vel = integrableObjects[i]->getVel();
145 <
146 <    for (j=0; j < 3; j++)
147 <      oldVel[3*i + j]  = vel[j];
148 <
149 <    if( integrableObjects[i]->isDirectional() ){
150 <
151 <      ji = integrableObjects[i]->getJ();
152 <
153 <      for (j=0; j < 3; j++)
154 <        oldJi[3*i + j] = ji[j];
155 <
156 <    }
157 <  }
158 <
159 <  // do the iteration:
160 <
161 <  for (k=0; k < 4; k++) {
162 <
163 <    instTemp = tStats->getTemperature();
164 <
165 <    // evolve chi another half step using the temperature at t + dt/2
166 <
167 <    prevChi = chi;
168 <    chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) /
169 <      (tauThermostat*tauThermostat);
170 <
171 <    for( i=0; i < integrableObjects.size(); i++ ){
172 <
173 <      integrableObjects[i]->getFrc( frc );
174 <      vel = integrableObjects[i]->getVel();
175 <
176 <      mass = integrableObjects[i]->getMass();
177 <
178 <      // velocity half step
179 <      for (j=0; j < 3; j++)
180 <        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi);
181 <
182 <      integrableObjects[i]->setVel( vel );
183 <
184 <      if( integrableObjects[i]->isDirectional() ){
185 <
186 <        // get and convert the torque to body frame
187 <
188 <        Tb = integrableObjects[i]->getTrq();
189 <        integrableObjects[i]->lab2Body( Tb );
190 <
191 <        for (j=0; j < 3; j++)
192 <          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
193 <
194 <        integrableObjects[i]->setJ( ji );
195 <      }
196 <    }
197 <    
198 <    if(nConstrained)
199 <      constrainB();
200 <
201 <    if (fabs(prevChi - chi) <= chiTolerance) break;
202 <  }
203 <
204 <  integralOfChidt += dt2*chi;
205 < }
206 <
207 < template<typename T> void NVT<T>::resetIntegrator( void ){
208 <
209 <  chi = 0.0;
210 <  integralOfChidt = 0.0;
211 < }
212 <
213 < template<typename T> int NVT<T>::readyCheck() {
214 <
215 <  //check parent's readyCheck() first
216 <  if (T::readyCheck() == -1)
217 <    return -1;
218 <
219 <  // First check to see if we have a target temperature.
220 <  // Not having one is fatal.
221 <
222 <  if (!have_target_temp) {
223 <    sprintf( painCave.errMsg,
224 <             "You can't use the NVT integrator without a targetTemp!\n"
225 <             );
226 <    painCave.isFatal = 1;
227 <    painCave.severity = OOPSE_ERROR;
228 <    simError();
229 <    return -1;
230 <  }
231 <
232 <  // We must set tauThermostat.
233 <
234 <  if (!have_tau_thermostat) {
235 <    sprintf( painCave.errMsg,
236 <             "If you use the constant temperature\n"
237 <             "\tintegrator, you must set tauThermostat.\n");
238 <    painCave.severity = OOPSE_ERROR;
239 <    painCave.isFatal = 1;
240 <    simError();
241 <    return -1;
242 <  }
243 <
244 <  if (!have_chi_tolerance) {
245 <    sprintf( painCave.errMsg,
246 <             "In NVT integrator: setting chi tolerance to 1e-6\n");
247 <    chiTolerance = 1e-6;
248 <    have_chi_tolerance = 1;
249 <    painCave.severity = OOPSE_INFO;
250 <    painCave.isFatal = 0;
251 <    simError();
252 <  }
253 <
254 <  return 1;
255 <
256 < }
257 <
258 < template<typename T> double NVT<T>::getConservedQuantity(void){
259 <
260 <  double conservedQuantity;
261 <  double fkBT;
262 <  double Energy;
263 <  double thermostat_kinetic;
264 <  double thermostat_potential;
265 <
266 <  fkBT = (double)(info->ndf) * kB * targetTemp;
267 <
268 <  Energy = tStats->getTotalE();
269 <
270 <  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
271 <    (2.0 * eConvert);
272 <
273 <  thermostat_potential = fkBT * integralOfChidt / eConvert;
274 <
275 <  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
276 <
277 <  return conservedQuantity;
278 < }
279 <
280 < template<typename T> string NVT<T>::getAdditionalParameters(void){
281 <  string parameters;
282 <  const int BUFFERSIZE = 2000; // size of the read buffer
283 <  char buffer[BUFFERSIZE];
284 <
285 <  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
286 <  parameters += buffer;
287 <
288 <  return parameters;
289 < }
1 > #inlcude "integrators/NVT.hpp"
2 >
3 > namespace oopse {
4 >
5 > NVT::NVT(SimInfo* Info) : VelocityVerletIntegrator(info){
6 >    GenericData *data;
7 >    DoubleGenericData *chiValue;
8 >    DoubleGenericData *integralOfChidtValue;
9 >
10 >    chiValue = NULL;
11 >    integralOfChidtValue = NULL;
12 >
13 >    chi = 0.0;
14 >    have_tau_thermostat = 0;
15 >    have_target_temp = 0;
16 >    have_chi_tolerance = 0;
17 >    integralOfChidt = 0.0;
18 >
19 >    if (theInfo->useInitXSstate) {
20 >
21 >        // retrieve chi and integralOfChidt from simInfo
22 >        data = info->getPropertyByName(CHIVALUE_ID);
23 >
24 >        if (data) {
25 >            chiValue = dynamic_cast<DoubleGenericData *>(data);
26 >        }
27 >
28 >        data = info->getPropertyByName(INTEGRALOFCHIDT_ID);
29 >
30 >        if (data) {
31 >            integralOfChidtValue = dynamic_cast<DoubleGenericData *>(data);
32 >        }
33 >
34 >        // chi and integralOfChidt should appear by pair
35 >        if (chiValue && integralOfChidtValue) {
36 >            chi = chiValue->getData();
37 >            integralOfChidt = integralOfChidtValue->getData();
38 >        }
39 >    }
40 >
41 >    oldVel_.resize(info_->getNIntegrableObjects());
42 >    oldJi_.resize(info_->getNIntegrableObjects());
43 > }
44 >
45 > NVT::~NVT() {
46 > }
47 >
48 > void NVT::moveA() {
49 >    typename SimInfo::MoleculeIterator i;
50 >    typename Molecule::IntegrableObjectIterator  j;
51 >    Molecule* mol;
52 >    StuntDouble* integrableObject;
53 >    Vector3d Tb;
54 >    Vector3d ji;
55 >    double mass;
56 >    Vector3d vel;
57 >    Vector3d pos;
58 >    Vector3d frc;
59 >
60 >    double instTemp;
61 >
62 >    // We need the temperature at time = t for the chi update below:
63 >
64 >    instTemp = tStats->getTemperature();
65 >
66 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
67 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
68 >               integrableObject = mol->nextIntegrableObject(j)) {
69 >
70 >        vel = integrableObject->getVel();
71 >        pos = integrableObject->getPos();
72 >        frc = integrableObject->getFrc();
73 >
74 >        mass = integrableObject->getMass();
75 >
76 >        // velocity half step  (use chi from previous step here):
77 >        //vel[j] += halfStep * ((frc[j] / mass ) * eConvert - vel[j]*chi);
78 >        vel = halfStep *eConvert/mass*frc - halfStep*chi*vel;
79 >        
80 >        // position whole step
81 >        //pos[j] += dt * vel[j];
82 >        pos += fullStep * vel;
83 >
84 >        integrableObject->setVel(vel);
85 >        integrableObject->setPos(pos);
86 >
87 >        if (integrableObject->isDirectional()) {
88 >
89 >            // get and convert the torque to body frame
90 >
91 >            Tb = integrableObject->getTrq();
92 >            integrableObject->lab2Body(Tb);
93 >
94 >            // get the angular momentum, and propagate a half step
95 >
96 >            ji = integrableObject->getJ();
97 >
98 >            //ji[j] += halfStep * (Tb[j] * eConvert - ji[j]*chi);
99 >            ji += halfStep*eConvert*Tb - halfStep*ch *ji;
100 >            this->rotationPropagation(integrableObject, ji);
101 >
102 >            integrableObject->setJ(ji);
103 >        }
104 >    }
105 >
106 >    }
107 >    
108 >    if (nConstrained)
109 >        constrainA();
110 >
111 >    // Finally, evolve chi a half step (just like a velocity) using
112 >    // temperature at time t, not time t+dt/2
113 >
114 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
115 >    double chi = currSnapshot->getChi();
116 >    double integralOfChidt = currSnapshot->getIntegralOfChiDt();
117 >    
118 >    chi += halfStep * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
119 >    integralOfChidt += chi * halfStep;
120 >
121 >    currSnapshot->setChi(chi);
122 >    currSnapshot->setIntegralOfChiDt(integralOfChidt);
123 > }
124 >
125 > void NVT::moveB() {
126 >    typename SimInfo::MoleculeIterator i;
127 >    typename Molecule::IntegrableObjectIterator  j;
128 >    Molecule* mol;
129 >    StuntDouble* integrableObject;
130 >    
131 >    Vector3d Tb;
132 >    Vector3d ji;    
133 >    Vector3d vel;
134 >    Vector3d frc;
135 >    double mass;
136 >    double instTemp;
137 >    double oldChi, prevChi;
138 >    int index;
139 >    // Set things up for the iteration:
140 >
141 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
142 >    double chi = currSnapshot->getChi();
143 >    double integralOfChidt = currSnapshot->getIntegralOfChiDt();
144 >    oldChi = chi;
145 >
146 >    index = 0;
147 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
148 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
149 >               integrableObject = mol->nextIntegrableObject(j)) {
150 >                oldVel_[index] = integrableObject->getVel();
151 >                oldJi_[index] = integrableObject->getJ();                
152 >        }
153 >        ++index;              
154 >    }
155 >
156 >    // do the iteration:
157 >
158 >    for(int k = 0; k < maxIterNum_; k++) {
159 >        index = 0;
160 >        instTemp = tStats->getTemperature();
161 >
162 >        // evolve chi another half step using the temperature at t + dt/2
163 >
164 >        prevChi = chi;
165 >        chi = oldChi + halfStep * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
166 >
167 >        for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
168 >            for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
169 >                   integrableObject = mol->nextIntegrableObject(j)) {
170 >
171 >                frc = integrableObject->getFrc();
172 >                vel = integrableObject->getVel();
173 >
174 >                mass = integrableObject->getMass();
175 >
176 >                // velocity half step
177 >                //for(j = 0; j < 3; j++)
178 >                //    vel[j] = oldVel_[3*i+j] + halfStep * ((frc[j] / mass ) * eConvert - oldVel_[3*i + j]*chi);
179 >                vel = oldVel_ + halfStep/mass*eConvert * frc - halfStep*chi*oldVel_[index];
180 >            
181 >                integrableObject->setVel(vel);
182 >
183 >                if (integrableObject->isDirectional()) {
184 >
185 >                    // get and convert the torque to body frame
186 >
187 >                    Tb = integrableObject->getTrq();
188 >                    integrableObject->lab2Body(Tb);
189 >
190 >                    //for(j = 0; j < 3; j++)
191 >                    //    ji[j] = oldJi_[3*i + j] + halfStep * (Tb[j] * eConvert - oldJi_[3*i+j]*chi);
192 >                    ji += halfStep*eConvert*Tb - halfStep*ch *oldJi_[index];
193 >
194 >                    integrableObject->setJ(ji);
195 >                }
196 >            }
197 >        }
198 >    
199 >
200 >        if (nConstrained)
201 >            constrainB();
202 >
203 >        if (fabs(prevChi - chi) <= chiTolerance)
204 >            break;
205 >
206 >        ++index;
207 >    }
208 >
209 >    integralOfChidt += halfStep * chi;
210 >
211 >    currSnapshot->setChi(chi);
212 >    currSnapshot->setIntegralOfChiDt(integralOfChidt);
213 > }
214 >
215 > template <typename T>
216 > int NVT<T>::readyCheck() {
217 >
218 >    //check parent's readyCheck() first
219 >    if (T::readyCheck() == -1)
220 >        return -1;
221 >
222 >    // First check to see if we have a target temperature.
223 >    // Not having one is fatal.
224 >
225 >    if (!have_target_temp) {
226 >        sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
227 >        painCave.isFatal = 1;
228 >        painCave.severity = OOPSE_ERROR;
229 >        simError();
230 >        return -1;
231 >    }
232 >
233 >    // We must set tauThermostat_.
234 >
235 >    if (!have_tau_thermostat) {
236 >        sprintf(painCave.errMsg, "If you use the constant temperature\n"
237 >                                     "\tintegrator, you must set tauThermostat_.\n");
238 >
239 >        painCave.severity = OOPSE_ERROR;
240 >        painCave.isFatal = 1;
241 >        simError();
242 >        return -1;
243 >    }
244 >
245 >    if (!have_chi_tolerance) {
246 >        sprintf(painCave.errMsg, "In NVT integrator: setting chi tolerance to 1e-6\n");
247 >        chiTolerance = 1e - 6;
248 >        have_chi_tolerance = 1;
249 >        painCave.severity = OOPSE_INFO;
250 >        painCave.isFatal = 0;
251 >        simError();
252 >    }
253 >
254 >    return 1;
255 > }
256 >
257 > template <typename T>
258 > double NVT<T>::getConservedQuantity(void) {
259 >    double conservedQuantity;
260 >    double fkBT;
261 >    double Energy;
262 >    double thermostat_kinetic;
263 >    double thermostat_potential;
264 >
265 >    fkBT = info_->getNdf() *kB *targetTemp_;
266 >
267 >    Energy = tStats->getTotalE();
268 >
269 >    thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * eConvert);
270 >
271 >    thermostat_potential = fkBT * integralOfChidt / eConvert;
272 >
273 >    conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
274 >
275 >    return conservedQuantity;
276 > }
277 >
278 >
279 > }//end namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines