# | Line 1 | Line 1 | |
---|---|---|
1 | + | #include <cmath> |
2 | #include "Atom.hpp" | |
3 | #include "SRI.hpp" | |
4 | #include "AbstractClasses.hpp" | |
# | Line 8 | Line 9 | |
9 | #include "Integrator.hpp" | |
10 | #include "simError.h" | |
11 | ||
12 | + | #ifdef IS_MPI |
13 | + | #include "mpiSimulation.hpp" |
14 | + | #endif |
15 | ||
16 | < | // Basic isotropic thermostating and barostating via the Melchionna |
16 | > | // Basic non-isotropic thermostating and barostating via the Melchionna |
17 | // modification of the Hoover algorithm: | |
18 | // | |
19 | // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | |
# | Line 19 | Line 23 | |
23 | // | |
24 | // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | |
25 | ||
26 | < | NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 | < | Integrator( theInfo, the_ff ) |
26 | > | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 | > | T( theInfo, the_ff ) |
28 | { | |
29 | < | int i; |
30 | < | chi = 0.0; |
31 | < | for(i = 0; i < 9; i++) eta[i] = 0.0; |
32 | < | have_tau_thermostat = 0; |
33 | < | have_tau_barostat = 0; |
34 | < | have_target_temp = 0; |
35 | < | have_target_pressure = 0; |
29 | > | |
30 | > | int i,j; |
31 | > | |
32 | > | for(i = 0; i < 3; i++){ |
33 | > | for (j = 0; j < 3; j++){ |
34 | > | |
35 | > | eta[i][j] = 0.0; |
36 | > | oldEta[i][j] = 0.0; |
37 | > | } |
38 | > | } |
39 | } | |
40 | ||
41 | < | void NPTf::moveA() { |
35 | < | |
36 | < | int i,j,k; |
37 | < | int atomIndex, aMatIndex; |
38 | < | DirectionalAtom* dAtom; |
39 | < | double Tb[3]; |
40 | < | double ji[3]; |
41 | < | double rj[3]; |
42 | < | double instaTemp, instaPress, instaVol; |
43 | < | double tt2, tb2; |
44 | < | double angle; |
45 | < | double press[9]; |
46 | < | const double p_convert = 1.63882576e8; |
41 | > | template<typename T> NPTf<T>::~NPTf() { |
42 | ||
43 | < | tt2 = tauThermostat * tauThermostat; |
44 | < | tb2 = tauBarostat * tauBarostat; |
43 | > | // empty for now |
44 | > | } |
45 | ||
46 | < | instaTemp = tStats->getTemperature(); |
47 | < | tStats->getPressureTensor(press); |
46 | > | template<typename T> void NPTf<T>::resetIntegrator() { |
47 | > | |
48 | > | int i, j; |
49 | > | |
50 | > | for(i = 0; i < 3; i++) |
51 | > | for (j = 0; j < 3; j++) |
52 | > | eta[i][j] = 0.0; |
53 | > | |
54 | > | T::resetIntegrator(); |
55 | > | } |
56 | ||
57 | < | for (i=0; i < 9; i++) press[i] *= p_convert; |
55 | < | |
56 | < | instaVol = tStats->getVolume(); |
57 | < | |
58 | < | // first evolve chi a half step |
57 | > | template<typename T> void NPTf<T>::evolveEtaA() { |
58 | ||
59 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
59 | > | int i, j; |
60 | ||
61 | < | eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); |
62 | < | eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
63 | < | eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
64 | < | eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
65 | < | eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); |
66 | < | eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
67 | < | eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
68 | < | eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
69 | < | eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); |
61 | > | for(i = 0; i < 3; i ++){ |
62 | > | for(j = 0; j < 3; j++){ |
63 | > | if( i == j) |
64 | > | eta[i][j] += dt2 * instaVol * |
65 | > | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
66 | > | else |
67 | > | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
68 | > | } |
69 | > | } |
70 | ||
71 | < | for( i=0; i<nAtoms; i++ ){ |
72 | < | atomIndex = i * 3; |
73 | < | aMatIndex = i * 9; |
74 | < | |
76 | < | // velocity half step |
77 | < | |
78 | < | vx = vel[atomIndex]; |
79 | < | vy = vel[atomIndex+1]; |
80 | < | vz = vel[atomIndex+2]; |
81 | < | |
82 | < | scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
83 | < | scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
84 | < | scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
85 | < | |
86 | < | vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
87 | < | vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
88 | < | vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
71 | > | for(i = 0; i < 3; i++) |
72 | > | for (j = 0; j < 3; j++) |
73 | > | oldEta[i][j] = eta[i][j]; |
74 | > | } |
75 | ||
76 | < | vel[atomIndex] = vx; |
77 | < | vel[atomIndex+1] = vy; |
78 | < | vel[atomIndex+2] = vz; |
76 | > | template<typename T> void NPTf<T>::evolveEtaB() { |
77 | > | |
78 | > | int i,j; |
79 | ||
80 | < | // position whole step |
80 | > | for(i = 0; i < 3; i++) |
81 | > | for (j = 0; j < 3; j++) |
82 | > | prevEta[i][j] = eta[i][j]; |
83 | ||
84 | < | rj[0] = pos[atomIndex]; |
85 | < | rj[1] = pos[atomIndex+1]; |
86 | < | rj[2] = pos[atomIndex+2]; |
84 | > | for(i = 0; i < 3; i ++){ |
85 | > | for(j = 0; j < 3; j++){ |
86 | > | if( i == j) { |
87 | > | eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
88 | > | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
89 | > | } else { |
90 | > | eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
91 | > | } |
92 | > | } |
93 | > | } |
94 | > | } |
95 | ||
96 | < | info->wrapVector(rj); |
96 | > | template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
97 | > | int i,j; |
98 | > | double vScale[3][3]; |
99 | ||
100 | < | scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; |
101 | < | scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; |
102 | < | scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; |
105 | < | |
106 | < | pos[atomIndex] += dt * (vel[atomIndex] + scx); |
107 | < | pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); |
108 | < | pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); |
109 | < | |
110 | < | if( atoms[i]->isDirectional() ){ |
111 | < | |
112 | < | dAtom = (DirectionalAtom *)atoms[i]; |
113 | < | |
114 | < | // get and convert the torque to body frame |
100 | > | for (i = 0; i < 3; i++ ) { |
101 | > | for (j = 0; j < 3; j++ ) { |
102 | > | vScale[i][j] = eta[i][j]; |
103 | ||
104 | < | Tb[0] = dAtom->getTx(); |
105 | < | Tb[1] = dAtom->getTy(); |
106 | < | Tb[2] = dAtom->getTz(); |
119 | < | |
120 | < | dAtom->lab2Body( Tb ); |
121 | < | |
122 | < | // get the angular momentum, and propagate a half step |
123 | < | |
124 | < | ji[0] = dAtom->getJx(); |
125 | < | ji[1] = dAtom->getJy(); |
126 | < | ji[2] = dAtom->getJz(); |
127 | < | |
128 | < | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
129 | < | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
130 | < | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
131 | < | |
132 | < | // use the angular velocities to propagate the rotation matrix a |
133 | < | // full time step |
134 | < | |
135 | < | // rotate about the x-axis |
136 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
137 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
138 | < | |
139 | < | // rotate about the y-axis |
140 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
141 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
142 | < | |
143 | < | // rotate about the z-axis |
144 | < | angle = dt * ji[2] / dAtom->getIzz(); |
145 | < | this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
146 | < | |
147 | < | // rotate about the y-axis |
148 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
149 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
150 | < | |
151 | < | // rotate about the x-axis |
152 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
153 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
154 | < | |
155 | < | dAtom->setJx( ji[0] ); |
156 | < | dAtom->setJy( ji[1] ); |
157 | < | dAtom->setJz( ji[2] ); |
104 | > | if (i == j) { |
105 | > | vScale[i][j] += chi; |
106 | > | } |
107 | } | |
159 | – | |
108 | } | |
161 | – | |
162 | – | // Scale the box after all the positions have been moved: |
109 | ||
110 | + | info->matVecMul3( vScale, vel, sc ); |
111 | + | } |
112 | ||
113 | + | template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
114 | + | int i,j; |
115 | + | double myVel[3]; |
116 | + | double vScale[3][3]; |
117 | ||
118 | < | // Use a taylor expansion for eta products |
119 | < | |
120 | < | info->getBoxM(hm); |
118 | > | for (i = 0; i < 3; i++ ) { |
119 | > | for (j = 0; j < 3; j++ ) { |
120 | > | vScale[i][j] = eta[i][j]; |
121 | > | |
122 | > | if (i == j) { |
123 | > | vScale[i][j] += chi; |
124 | > | } |
125 | > | } |
126 | > | } |
127 | ||
128 | + | for (j = 0; j < 3; j++) |
129 | + | myVel[j] = oldVel[3*index + j]; |
130 | ||
131 | + | info->matVecMul3( vScale, myVel, sc ); |
132 | + | } |
133 | ||
134 | + | template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
135 | + | int index, double sc[3]){ |
136 | + | int j; |
137 | + | double rj[3]; |
138 | ||
139 | < | |
140 | < | |
175 | < | info->scaleBox(exp(dt*eta)); |
176 | < | |
139 | > | for(j=0; j<3; j++) |
140 | > | rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
141 | ||
142 | + | info->matVecMul3( eta, rj, sc ); |
143 | } | |
144 | ||
145 | < | void NPTi::moveB( void ){ |
145 | > | template<typename T> void NPTf<T>::scaleSimBox( void ){ |
146 | > | |
147 | int i,j,k; | |
148 | < | int atomIndex; |
149 | < | DirectionalAtom* dAtom; |
150 | < | double Tb[3]; |
151 | < | double ji[3]; |
186 | < | double instaTemp, instaPress, instaVol; |
187 | < | double tt2, tb2; |
148 | > | double scaleMat[3][3]; |
149 | > | double eta2ij; |
150 | > | double bigScale, smallScale, offDiagMax; |
151 | > | double hm[3][3], hmnew[3][3]; |
152 | ||
189 | – | tt2 = tauThermostat * tauThermostat; |
190 | – | tb2 = tauBarostat * tauBarostat; |
153 | ||
192 | – | instaTemp = tStats->getTemperature(); |
193 | – | instaPress = tStats->getPressure(); |
194 | – | instaVol = tStats->getVolume(); |
154 | ||
155 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
197 | < | eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
155 | > | // Scale the box after all the positions have been moved: |
156 | ||
157 | < | for( i=0; i<nAtoms; i++ ){ |
158 | < | atomIndex = i * 3; |
159 | < | |
160 | < | // velocity half step |
161 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
162 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
163 | < | vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
164 | < | - vel[j]*(chi+eta)); |
165 | < | |
208 | < | if( atoms[i]->isDirectional() ){ |
157 | > | // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
158 | > | // Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
159 | > | |
160 | > | bigScale = 1.0; |
161 | > | smallScale = 1.0; |
162 | > | offDiagMax = 0.0; |
163 | > | |
164 | > | for(i=0; i<3; i++){ |
165 | > | for(j=0; j<3; j++){ |
166 | ||
167 | < | dAtom = (DirectionalAtom *)atoms[i]; |
167 | > | // Calculate the matrix Product of the eta array (we only need |
168 | > | // the ij element right now): |
169 | ||
170 | < | // get and convert the torque to body frame |
170 | > | eta2ij = 0.0; |
171 | > | for(k=0; k<3; k++){ |
172 | > | eta2ij += eta[i][k] * eta[k][j]; |
173 | > | } |
174 | ||
175 | < | Tb[0] = dAtom->getTx(); |
176 | < | Tb[1] = dAtom->getTy(); |
177 | < | Tb[2] = dAtom->getTz(); |
178 | < | |
179 | < | dAtom->lab2Body( Tb ); |
180 | < | |
181 | < | // get the angular momentum, and complete the angular momentum |
182 | < | // half step |
183 | < | |
223 | < | ji[0] = dAtom->getJx(); |
224 | < | ji[1] = dAtom->getJy(); |
225 | < | ji[2] = dAtom->getJz(); |
226 | < | |
227 | < | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
228 | < | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
229 | < | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
230 | < | |
231 | < | dAtom->setJx( ji[0] ); |
232 | < | dAtom->setJy( ji[1] ); |
233 | < | dAtom->setJz( ji[2] ); |
175 | > | scaleMat[i][j] = 0.0; |
176 | > | // identity matrix (see above): |
177 | > | if (i == j) scaleMat[i][j] = 1.0; |
178 | > | // Taylor expansion for the exponential truncated at second order: |
179 | > | scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
180 | > | |
181 | > | if (i != j) |
182 | > | if (fabs(scaleMat[i][j]) > offDiagMax) |
183 | > | offDiagMax = fabs(scaleMat[i][j]); |
184 | } | |
235 | – | } |
236 | – | } |
185 | ||
186 | < | int NPTi::readyCheck() { |
187 | < | |
188 | < | // First check to see if we have a target temperature. |
241 | < | // Not having one is fatal. |
186 | > | if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
187 | > | if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
188 | > | } |
189 | ||
190 | < | if (!have_target_temp) { |
190 | > | if ((bigScale > 1.1) || (smallScale < 0.9)) { |
191 | sprintf( painCave.errMsg, | |
192 | < | "NPTi error: You can't use the NPTi integrator\n" |
193 | < | " without a targetTemp!\n" |
194 | < | ); |
192 | > | "NPTf error: Attempting a Box scaling of more than 10 percent.\n" |
193 | > | " Check your tauBarostat, as it is probably too small!\n\n" |
194 | > | " scaleMat = [%lf\t%lf\t%lf]\n" |
195 | > | " [%lf\t%lf\t%lf]\n" |
196 | > | " [%lf\t%lf\t%lf]\n", |
197 | > | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
198 | > | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
199 | > | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
200 | painCave.isFatal = 1; | |
201 | simError(); | |
202 | < | return -1; |
251 | < | } |
252 | < | |
253 | < | if (!have_target_pressure) { |
202 | > | } else if (offDiagMax > 0.1) { |
203 | sprintf( painCave.errMsg, | |
204 | < | "NPTi error: You can't use the NPTi integrator\n" |
205 | < | " without a targetPressure!\n" |
206 | < | ); |
204 | > | "NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" |
205 | > | " Check your tauBarostat, as it is probably too small!\n\n" |
206 | > | " scaleMat = [%lf\t%lf\t%lf]\n" |
207 | > | " [%lf\t%lf\t%lf]\n" |
208 | > | " [%lf\t%lf\t%lf]\n", |
209 | > | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
210 | > | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
211 | > | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
212 | painCave.isFatal = 1; | |
213 | simError(); | |
214 | < | return -1; |
214 | > | } else { |
215 | > | info->getBoxM(hm); |
216 | > | info->matMul3(hm, scaleMat, hmnew); |
217 | > | info->setBoxM(hmnew); |
218 | } | |
219 | + | } |
220 | + | |
221 | + | template<typename T> bool NPTf<T>::etaConverged() { |
222 | + | int i; |
223 | + | double diffEta, sumEta; |
224 | + | |
225 | + | sumEta = 0; |
226 | + | for(i = 0; i < 3; i++) |
227 | + | sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
228 | ||
229 | < | // We must set tauThermostat. |
230 | < | |
231 | < | if (!have_tau_thermostat) { |
232 | < | sprintf( painCave.errMsg, |
267 | < | "NPTi error: If you use the NPTi\n" |
268 | < | " integrator, you must set tauThermostat.\n"); |
269 | < | painCave.isFatal = 1; |
270 | < | simError(); |
271 | < | return -1; |
272 | < | } |
229 | > | diffEta = sqrt( sumEta / 3.0 ); |
230 | > | |
231 | > | return ( diffEta <= etaTolerance ); |
232 | > | } |
233 | ||
234 | < | // We must set tauBarostat. |
235 | < | |
236 | < | if (!have_tau_barostat) { |
237 | < | sprintf( painCave.errMsg, |
238 | < | "NPTi error: If you use the NPTi\n" |
239 | < | " integrator, you must set tauBarostat.\n"); |
240 | < | painCave.isFatal = 1; |
241 | < | simError(); |
242 | < | return -1; |
243 | < | } |
234 | > | template<typename T> double NPTf<T>::getConservedQuantity(void){ |
235 | > | |
236 | > | double conservedQuantity; |
237 | > | double totalEnergy; |
238 | > | double thermostat_kinetic; |
239 | > | double thermostat_potential; |
240 | > | double barostat_kinetic; |
241 | > | double barostat_potential; |
242 | > | double trEta; |
243 | > | double a[3][3], b[3][3]; |
244 | ||
245 | < | // We need NkBT a lot, so just set it here: |
245 | > | totalEnergy = tStats->getTotalE(); |
246 | ||
247 | < | NkBT = (double)info->ndf * kB * targetTemp; |
247 | > | thermostat_kinetic = fkBT * tt2 * chi * chi / |
248 | > | (2.0 * eConvert); |
249 | ||
250 | < | return 1; |
250 | > | thermostat_potential = fkBT* integralOfChidt / eConvert; |
251 | > | |
252 | > | info->transposeMat3(eta, a); |
253 | > | info->matMul3(a, eta, b); |
254 | > | trEta = info->matTrace3(b); |
255 | > | |
256 | > | barostat_kinetic = NkBT * tb2 * trEta / |
257 | > | (2.0 * eConvert); |
258 | > | |
259 | > | barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
260 | > | eConvert; |
261 | > | |
262 | > | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
263 | > | barostat_kinetic + barostat_potential; |
264 | > | |
265 | > | // cout.width(8); |
266 | > | // cout.precision(8); |
267 | > | |
268 | > | // cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
269 | > | // "\t" << thermostat_potential << "\t" << barostat_kinetic << |
270 | > | // "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
271 | > | |
272 | > | return conservedQuantity; |
273 | > | |
274 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |