# | Line 26 | Line 26 | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, | |
---|---|---|
26 | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): | |
27 | T( theInfo, the_ff ) | |
28 | { | |
29 | < | int i, j; |
30 | < | chi = 0.0; |
31 | < | integralOfChidt = 0.0; |
32 | < | |
33 | < | for(i = 0; i < 3; i++) |
34 | < | for (j = 0; j < 3; j++) |
29 | > | |
30 | > | int i,j; |
31 | > | |
32 | > | for(i = 0; i < 3; i++){ |
33 | > | for (j = 0; j < 3; j++){ |
34 | > | |
35 | eta[i][j] = 0.0; | |
36 | + | oldEta[i][j] = 0.0; |
37 | + | } |
38 | + | } |
39 | + | } |
40 | ||
41 | < | have_tau_thermostat = 0; |
38 | < | have_tau_barostat = 0; |
39 | < | have_target_temp = 0; |
40 | < | have_target_pressure = 0; |
41 | > | template<typename T> NPTf<T>::~NPTf() { |
42 | ||
43 | < | have_chi_tolerance = 0; |
44 | < | have_eta_tolerance = 0; |
44 | < | have_pos_iter_tolerance = 0; |
43 | > | // empty for now |
44 | > | } |
45 | ||
46 | < | oldPos = new double[3*nAtoms]; |
47 | < | oldVel = new double[3*nAtoms]; |
48 | < | oldJi = new double[3*nAtoms]; |
49 | < | #ifdef IS_MPI |
50 | < | Nparticles = mpiSim->getTotAtoms(); |
51 | < | #else |
52 | < | Nparticles = theInfo->n_atoms; |
53 | < | #endif |
54 | < | |
46 | > | template<typename T> void NPTf<T>::resetIntegrator() { |
47 | > | |
48 | > | int i, j; |
49 | > | |
50 | > | for(i = 0; i < 3; i++) |
51 | > | for (j = 0; j < 3; j++) |
52 | > | eta[i][j] = 0.0; |
53 | > | |
54 | > | T::resetIntegrator(); |
55 | } | |
56 | ||
57 | < | template<typename T> NPTf<T>::~NPTf() { |
58 | < | delete[] oldPos; |
59 | < | delete[] oldVel; |
60 | < | delete[] oldJi; |
57 | > | template<typename T> void NPTf<T>::evolveEtaA() { |
58 | > | |
59 | > | int i, j; |
60 | > | |
61 | > | for(i = 0; i < 3; i ++){ |
62 | > | for(j = 0; j < 3; j++){ |
63 | > | if( i == j) |
64 | > | eta[i][j] += dt2 * instaVol * |
65 | > | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
66 | > | else |
67 | > | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
68 | > | } |
69 | > | } |
70 | > | |
71 | > | for(i = 0; i < 3; i++) |
72 | > | for (j = 0; j < 3; j++) |
73 | > | oldEta[i][j] = eta[i][j]; |
74 | } | |
75 | ||
76 | < | template<typename T> void NPTf<T>::moveA() { |
76 | > | template<typename T> void NPTf<T>::evolveEtaB() { |
77 | > | |
78 | > | int i,j; |
79 | ||
80 | < | // new version of NPTf |
81 | < | int i, j, k; |
82 | < | DirectionalAtom* dAtom; |
68 | < | double Tb[3], ji[3]; |
69 | < | double A[3][3], I[3][3]; |
70 | < | double angle, mass; |
71 | < | double vel[3], pos[3], frc[3]; |
80 | > | for(i = 0; i < 3; i++) |
81 | > | for (j = 0; j < 3; j++) |
82 | > | prevEta[i][j] = eta[i][j]; |
83 | ||
84 | < | double rj[3]; |
85 | < | double instaTemp, instaPress, instaVol; |
86 | < | double tt2, tb2; |
87 | < | double sc[3]; |
88 | < | double eta2ij; |
89 | < | double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
90 | < | double bigScale, smallScale, offDiagMax; |
91 | < | double COM[3]; |
84 | > | for(i = 0; i < 3; i ++){ |
85 | > | for(j = 0; j < 3; j++){ |
86 | > | if( i == j) { |
87 | > | eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
88 | > | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
89 | > | } else { |
90 | > | eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
91 | > | } |
92 | > | } |
93 | > | } |
94 | > | } |
95 | ||
96 | < | tt2 = tauThermostat * tauThermostat; |
97 | < | tb2 = tauBarostat * tauBarostat; |
96 | > | template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
97 | > | int i,j; |
98 | > | double vScale[3][3]; |
99 | ||
85 | – | instaTemp = tStats->getTemperature(); |
86 | – | tStats->getPressureTensor(press); |
87 | – | instaVol = tStats->getVolume(); |
88 | – | |
89 | – | tStats->getCOM(COM); |
90 | – | |
91 | – | //calculate scale factor of veloity |
100 | for (i = 0; i < 3; i++ ) { | |
101 | for (j = 0; j < 3; j++ ) { | |
102 | vScale[i][j] = eta[i][j]; | |
# | Line 99 | Line 107 | template<typename T> void NPTf<T>::moveA() { | |
107 | } | |
108 | } | |
109 | ||
110 | < | //evolve velocity half step |
111 | < | for( i=0; i<nAtoms; i++ ){ |
110 | > | info->matVecMul3( vScale, vel, sc ); |
111 | > | } |
112 | ||
113 | < | atoms[i]->getVel( vel ); |
114 | < | atoms[i]->getFrc( frc ); |
113 | > | template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
114 | > | int i,j; |
115 | > | double myVel[3]; |
116 | > | double vScale[3][3]; |
117 | ||
118 | < | mass = atoms[i]->getMass(); |
119 | < | |
120 | < | info->matVecMul3( vScale, vel, sc ); |
111 | < | |
112 | < | for (j=0; j < 3; j++) { |
113 | < | // velocity half step |
114 | < | vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
115 | < | } |
116 | < | |
117 | < | atoms[i]->setVel( vel ); |
118 | < | |
119 | < | if( atoms[i]->isDirectional() ){ |
120 | < | |
121 | < | dAtom = (DirectionalAtom *)atoms[i]; |
122 | < | |
123 | < | // get and convert the torque to body frame |
118 | > | for (i = 0; i < 3; i++ ) { |
119 | > | for (j = 0; j < 3; j++ ) { |
120 | > | vScale[i][j] = eta[i][j]; |
121 | ||
122 | < | dAtom->getTrq( Tb ); |
123 | < | dAtom->lab2Body( Tb ); |
124 | < | |
128 | < | // get the angular momentum, and propagate a half step |
129 | < | |
130 | < | dAtom->getJ( ji ); |
131 | < | |
132 | < | for (j=0; j < 3; j++) |
133 | < | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
134 | < | |
135 | < | // use the angular velocities to propagate the rotation matrix a |
136 | < | // full time step |
137 | < | |
138 | < | dAtom->getA(A); |
139 | < | dAtom->getI(I); |
140 | < | |
141 | < | // rotate about the x-axis |
142 | < | angle = dt2 * ji[0] / I[0][0]; |
143 | < | this->rotate( 1, 2, angle, ji, A ); |
144 | < | |
145 | < | // rotate about the y-axis |
146 | < | angle = dt2 * ji[1] / I[1][1]; |
147 | < | this->rotate( 2, 0, angle, ji, A ); |
148 | < | |
149 | < | // rotate about the z-axis |
150 | < | angle = dt * ji[2] / I[2][2]; |
151 | < | this->rotate( 0, 1, angle, ji, A); |
152 | < | |
153 | < | // rotate about the y-axis |
154 | < | angle = dt2 * ji[1] / I[1][1]; |
155 | < | this->rotate( 2, 0, angle, ji, A ); |
156 | < | |
157 | < | // rotate about the x-axis |
158 | < | angle = dt2 * ji[0] / I[0][0]; |
159 | < | this->rotate( 1, 2, angle, ji, A ); |
160 | < | |
161 | < | dAtom->setJ( ji ); |
162 | < | dAtom->setA( A ); |
163 | < | } |
164 | < | } |
165 | < | |
166 | < | // advance chi half step |
167 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
168 | < | |
169 | < | // calculate the integral of chidt |
170 | < | integralOfChidt += dt2*chi; |
171 | < | |
172 | < | // advance eta half step |
173 | < | |
174 | < | for(i = 0; i < 3; i ++) |
175 | < | for(j = 0; j < 3; j++){ |
176 | < | if( i == j) |
177 | < | eta[i][j] += dt2 * instaVol * |
178 | < | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
179 | < | else |
180 | < | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
122 | > | if (i == j) { |
123 | > | vScale[i][j] += chi; |
124 | > | } |
125 | } | |
182 | – | |
183 | – | //save the old positions |
184 | – | for(i = 0; i < nAtoms; i++){ |
185 | – | atoms[i]->getPos(pos); |
186 | – | for(j = 0; j < 3; j++) |
187 | – | oldPos[i*3 + j] = pos[j]; |
126 | } | |
127 | ||
128 | < | //the first estimation of r(t+dt) is equal to r(t) |
129 | < | |
192 | < | for(k = 0; k < 4; k ++){ |
128 | > | for (j = 0; j < 3; j++) |
129 | > | myVel[j] = oldVel[3*index + j]; |
130 | ||
131 | < | for(i =0 ; i < nAtoms; i++){ |
131 | > | info->matVecMul3( vScale, myVel, sc ); |
132 | > | } |
133 | ||
134 | < | atoms[i]->getVel(vel); |
135 | < | atoms[i]->getPos(pos); |
134 | > | template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
135 | > | int index, double sc[3]){ |
136 | > | int j; |
137 | > | double rj[3]; |
138 | ||
139 | < | for(j = 0; j < 3; j++) |
140 | < | rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; |
201 | < | |
202 | < | info->matVecMul3( eta, rj, sc ); |
203 | < | |
204 | < | for(j = 0; j < 3; j++) |
205 | < | pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); |
139 | > | for(j=0; j<3; j++) |
140 | > | rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
141 | ||
142 | < | atoms[i]->setPos( pos ); |
142 | > | info->matVecMul3( eta, rj, sc ); |
143 | > | } |
144 | ||
145 | < | } |
145 | > | template<typename T> void NPTf<T>::scaleSimBox( void ){ |
146 | ||
147 | < | if (nConstrained) { |
148 | < | constrainA(); |
149 | < | } |
150 | < | } |
147 | > | int i,j,k; |
148 | > | double scaleMat[3][3]; |
149 | > | double eta2ij; |
150 | > | double bigScale, smallScale, offDiagMax; |
151 | > | double hm[3][3], hmnew[3][3]; |
152 | > | |
153 | ||
154 | < | |
154 | > | |
155 | // Scale the box after all the positions have been moved: | |
156 | ||
157 | // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) | |
# | Line 277 | Line 215 | template<typename T> void NPTf<T>::moveA() { | |
215 | info->getBoxM(hm); | |
216 | info->matMul3(hm, scaleMat, hmnew); | |
217 | info->setBoxM(hmnew); | |
280 | – | } |
281 | – | |
282 | – | } |
283 | – | |
284 | – | template<typename T> void NPTf<T>::moveB( void ){ |
285 | – | |
286 | – | //new version of NPTf |
287 | – | int i, j, k; |
288 | – | DirectionalAtom* dAtom; |
289 | – | double Tb[3], ji[3]; |
290 | – | double vel[3], myVel[3], frc[3]; |
291 | – | double mass; |
292 | – | |
293 | – | double instaTemp, instaPress, instaVol; |
294 | – | double tt2, tb2; |
295 | – | double sc[3]; |
296 | – | double press[3][3], vScale[3][3]; |
297 | – | double oldChi, prevChi; |
298 | – | double oldEta[3][3], prevEta[3][3], diffEta; |
299 | – | |
300 | – | tt2 = tauThermostat * tauThermostat; |
301 | – | tb2 = tauBarostat * tauBarostat; |
302 | – | |
303 | – | // Set things up for the iteration: |
304 | – | |
305 | – | oldChi = chi; |
306 | – | |
307 | – | for(i = 0; i < 3; i++) |
308 | – | for(j = 0; j < 3; j++) |
309 | – | oldEta[i][j] = eta[i][j]; |
310 | – | |
311 | – | for( i=0; i<nAtoms; i++ ){ |
312 | – | |
313 | – | atoms[i]->getVel( vel ); |
314 | – | |
315 | – | for (j=0; j < 3; j++) |
316 | – | oldVel[3*i + j] = vel[j]; |
317 | – | |
318 | – | if( atoms[i]->isDirectional() ){ |
319 | – | |
320 | – | dAtom = (DirectionalAtom *)atoms[i]; |
321 | – | |
322 | – | dAtom->getJ( ji ); |
323 | – | |
324 | – | for (j=0; j < 3; j++) |
325 | – | oldJi[3*i + j] = ji[j]; |
326 | – | |
327 | – | } |
218 | } | |
329 | – | |
330 | – | // do the iteration: |
331 | – | |
332 | – | instaVol = tStats->getVolume(); |
333 | – | |
334 | – | for (k=0; k < 4; k++) { |
335 | – | |
336 | – | instaTemp = tStats->getTemperature(); |
337 | – | tStats->getPressureTensor(press); |
338 | – | |
339 | – | // evolve chi another half step using the temperature at t + dt/2 |
340 | – | |
341 | – | prevChi = chi; |
342 | – | chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
343 | – | |
344 | – | for(i = 0; i < 3; i++) |
345 | – | for(j = 0; j < 3; j++) |
346 | – | prevEta[i][j] = eta[i][j]; |
347 | – | |
348 | – | //advance eta half step and calculate scale factor for velocity |
349 | – | |
350 | – | for(i = 0; i < 3; i ++) |
351 | – | for(j = 0; j < 3; j++){ |
352 | – | if( i == j) { |
353 | – | eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
354 | – | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
355 | – | vScale[i][j] = eta[i][j] + chi; |
356 | – | } else { |
357 | – | eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
358 | – | vScale[i][j] = eta[i][j]; |
359 | – | } |
360 | – | } |
361 | – | |
362 | – | for( i=0; i<nAtoms; i++ ){ |
363 | – | |
364 | – | atoms[i]->getFrc( frc ); |
365 | – | atoms[i]->getVel(vel); |
366 | – | |
367 | – | mass = atoms[i]->getMass(); |
368 | – | |
369 | – | for (j = 0; j < 3; j++) |
370 | – | myVel[j] = oldVel[3*i + j]; |
371 | – | |
372 | – | info->matVecMul3( vScale, myVel, sc ); |
373 | – | |
374 | – | // velocity half step |
375 | – | for (j=0; j < 3; j++) { |
376 | – | // velocity half step (use chi from previous step here): |
377 | – | vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
378 | – | } |
379 | – | |
380 | – | atoms[i]->setVel( vel ); |
381 | – | |
382 | – | if( atoms[i]->isDirectional() ){ |
383 | – | |
384 | – | dAtom = (DirectionalAtom *)atoms[i]; |
385 | – | |
386 | – | // get and convert the torque to body frame |
387 | – | |
388 | – | dAtom->getTrq( Tb ); |
389 | – | dAtom->lab2Body( Tb ); |
390 | – | |
391 | – | for (j=0; j < 3; j++) |
392 | – | ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
393 | – | |
394 | – | dAtom->setJ( ji ); |
395 | – | } |
396 | – | } |
397 | – | |
398 | – | if (nConstrained) { |
399 | – | constrainB(); |
400 | – | } |
401 | – | |
402 | – | diffEta = 0; |
403 | – | for(i = 0; i < 3; i++) |
404 | – | diffEta += pow(prevEta[i][i] - eta[i][i], 2); |
405 | – | |
406 | – | if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance) |
407 | – | break; |
408 | – | } |
409 | – | |
410 | – | //calculate integral of chidt |
411 | – | integralOfChidt += dt2*chi; |
412 | – | |
219 | } | |
220 | ||
221 | < | template<typename T> void NPTf<T>::resetIntegrator() { |
222 | < | int i,j; |
223 | < | |
418 | < | chi = 0.0; |
221 | > | template<typename T> bool NPTf<T>::etaConverged() { |
222 | > | int i; |
223 | > | double diffEta, sumEta; |
224 | ||
225 | < | for(i = 0; i < 3; i++) |
226 | < | for (j = 0; j < 3; j++) |
227 | < | eta[i][j] = 0.0; |
423 | < | |
424 | < | } |
425 | < | |
426 | < | template<typename T> int NPTf<T>::readyCheck() { |
427 | < | |
428 | < | //check parent's readyCheck() first |
429 | < | if (T::readyCheck() == -1) |
430 | < | return -1; |
431 | < | |
432 | < | // First check to see if we have a target temperature. |
433 | < | // Not having one is fatal. |
225 | > | sumEta = 0; |
226 | > | for(i = 0; i < 3; i++) |
227 | > | sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
228 | ||
229 | < | if (!have_target_temp) { |
436 | < | sprintf( painCave.errMsg, |
437 | < | "NPTf error: You can't use the NPTf integrator\n" |
438 | < | " without a targetTemp!\n" |
439 | < | ); |
440 | < | painCave.isFatal = 1; |
441 | < | simError(); |
442 | < | return -1; |
443 | < | } |
444 | < | |
445 | < | if (!have_target_pressure) { |
446 | < | sprintf( painCave.errMsg, |
447 | < | "NPTf error: You can't use the NPTf integrator\n" |
448 | < | " without a targetPressure!\n" |
449 | < | ); |
450 | < | painCave.isFatal = 1; |
451 | < | simError(); |
452 | < | return -1; |
453 | < | } |
229 | > | diffEta = sqrt( sumEta / 3.0 ); |
230 | ||
231 | < | // We must set tauThermostat. |
456 | < | |
457 | < | if (!have_tau_thermostat) { |
458 | < | sprintf( painCave.errMsg, |
459 | < | "NPTf error: If you use the NPTf\n" |
460 | < | " integrator, you must set tauThermostat.\n"); |
461 | < | painCave.isFatal = 1; |
462 | < | simError(); |
463 | < | return -1; |
464 | < | } |
465 | < | |
466 | < | // We must set tauBarostat. |
467 | < | |
468 | < | if (!have_tau_barostat) { |
469 | < | sprintf( painCave.errMsg, |
470 | < | "NPTf error: If you use the NPTf\n" |
471 | < | " integrator, you must set tauBarostat.\n"); |
472 | < | painCave.isFatal = 1; |
473 | < | simError(); |
474 | < | return -1; |
475 | < | } |
476 | < | |
477 | < | |
478 | < | // We need NkBT a lot, so just set it here: This is the RAW number |
479 | < | // of particles, so no subtraction or addition of constraints or |
480 | < | // orientational degrees of freedom: |
481 | < | |
482 | < | NkBT = (double)Nparticles * kB * targetTemp; |
483 | < | |
484 | < | // fkBT is used because the thermostat operates on more degrees of freedom |
485 | < | // than the barostat (when there are particles with orientational degrees |
486 | < | // of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons |
487 | < | |
488 | < | fkBT = (double)info->ndf * kB * targetTemp; |
489 | < | |
490 | < | return 1; |
231 | > | return ( diffEta <= etaTolerance ); |
232 | } | |
233 | ||
234 | template<typename T> double NPTf<T>::getConservedQuantity(void){ | |
235 | < | |
235 | > | |
236 | double conservedQuantity; | |
237 | < | double Energy; |
237 | > | double totalEnergy; |
238 | double thermostat_kinetic; | |
239 | double thermostat_potential; | |
240 | double barostat_kinetic; | |
# | Line 501 | Line 242 | template<typename T> double NPTf<T>::getConservedQuant | |
242 | double trEta; | |
243 | double a[3][3], b[3][3]; | |
244 | ||
245 | < | Energy = tStats->getTotalE(); |
245 | > | totalEnergy = tStats->getTotalE(); |
246 | ||
247 | < | thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / |
247 | > | thermostat_kinetic = fkBT* tt2 * chi * chi / |
248 | (2.0 * eConvert); | |
249 | ||
250 | thermostat_potential = fkBT* integralOfChidt / eConvert; | |
# | Line 512 | Line 253 | template<typename T> double NPTf<T>::getConservedQuant | |
253 | info->matMul3(a, eta, b); | |
254 | trEta = info->matTrace3(b); | |
255 | ||
256 | < | barostat_kinetic = NkBT * tauBarostat * tauBarostat * trEta / |
256 | > | barostat_kinetic = NkBT * tb2 * trEta / |
257 | (2.0 * eConvert); | |
258 | ||
259 | barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / | |
260 | eConvert; | |
261 | ||
262 | < | conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
262 | > | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
263 | barostat_kinetic + barostat_potential; | |
264 | ||
265 | < | cout.width(8); |
266 | < | cout.precision(8); |
265 | > | // cout.width(8); |
266 | > | // cout.precision(8); |
267 | ||
268 | < | cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
269 | < | "\t" << thermostat_potential << "\t" << barostat_kinetic << |
270 | < | "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
268 | > | // cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
269 | > | // "\t" << thermostat_potential << "\t" << barostat_kinetic << |
270 | > | // "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
271 | ||
272 | return conservedQuantity; | |
273 | + | |
274 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |