# | Line 1 | Line 1 | |
---|---|---|
1 | + | #include <math.h> |
2 | #include "Atom.hpp" | |
3 | #include "SRI.hpp" | |
4 | #include "AbstractClasses.hpp" | |
# | Line 8 | Line 9 | |
9 | #include "Integrator.hpp" | |
10 | #include "simError.h" | |
11 | ||
12 | + | #ifdef IS_MPI |
13 | + | #include "mpiSimulation.hpp" |
14 | + | #endif |
15 | ||
16 | // Basic non-isotropic thermostating and barostating via the Melchionna | |
17 | // modification of the Hoover algorithm: | |
# | Line 19 | Line 23 | |
23 | // | |
24 | // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | |
25 | ||
26 | < | NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 | < | Integrator( theInfo, the_ff ) |
26 | > | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 | > | T( theInfo, the_ff ) |
28 | { | |
29 | < | int i, j; |
30 | < | chi = 0.0; |
31 | < | |
32 | < | for(i = 0; i < 3; i++) |
33 | < | for (j = 0; j < 3; j_++) |
29 | > | |
30 | > | int i,j; |
31 | > | |
32 | > | for(i = 0; i < 3; i++){ |
33 | > | for (j = 0; j < 3; j++){ |
34 | > | |
35 | eta[i][j] = 0.0; | |
36 | + | oldEta[i][j] = 0.0; |
37 | + | } |
38 | + | } |
39 | + | } |
40 | ||
41 | < | have_tau_thermostat = 0; |
42 | < | have_tau_barostat = 0; |
43 | < | have_target_temp = 0; |
35 | < | have_target_pressure = 0; |
41 | > | template<typename T> NPTf<T>::~NPTf() { |
42 | > | |
43 | > | // empty for now |
44 | } | |
45 | ||
46 | < | void NPTf::moveA() { |
46 | > | template<typename T> void NPTf<T>::resetIntegrator() { |
47 | ||
48 | < | int i,j,k; |
49 | < | int atomIndex, aMatIndex; |
50 | < | DirectionalAtom* dAtom; |
51 | < | double Tb[3]; |
52 | < | double ji[3]; |
53 | < | double ri[3], vi[3], sc[3]; |
54 | < | double instaTemp, instaVol; |
55 | < | double tt2, tb2, eta2ij; |
48 | < | double angle; |
49 | < | double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
48 | > | int i, j; |
49 | > | |
50 | > | for(i = 0; i < 3; i++) |
51 | > | for (j = 0; j < 3; j++) |
52 | > | eta[i][j] = 0.0; |
53 | > | |
54 | > | T::resetIntegrator(); |
55 | > | } |
56 | ||
57 | < | tt2 = tauThermostat * tauThermostat; |
58 | < | tb2 = tauBarostat * tauBarostat; |
57 | > | template<typename T> void NPTf<T>::evolveEtaA() { |
58 | > | |
59 | > | int i, j; |
60 | > | |
61 | > | for(i = 0; i < 3; i ++){ |
62 | > | for(j = 0; j < 3; j++){ |
63 | > | if( i == j) |
64 | > | eta[i][j] += dt2 * instaVol * |
65 | > | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
66 | > | else |
67 | > | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
68 | > | } |
69 | > | } |
70 | > | |
71 | > | for(i = 0; i < 3; i++) |
72 | > | for (j = 0; j < 3; j++) |
73 | > | oldEta[i][j] = eta[i][j]; |
74 | > | } |
75 | ||
76 | < | instaTemp = tStats->getTemperature(); |
55 | < | tStats->getPressureTensor(press); |
56 | < | instaVol = tStats->getVolume(); |
57 | < | |
58 | < | // first evolve chi a half step |
76 | > | template<typename T> void NPTf<T>::evolveEtaB() { |
77 | ||
78 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
78 | > | int i,j; |
79 | ||
80 | < | for (i = 0; i < 3; i++ ) { |
81 | < | for (j = 0; j < 3; j++ ) { |
82 | < | if (i == j) { |
80 | > | for(i = 0; i < 3; i++) |
81 | > | for (j = 0; j < 3; j++) |
82 | > | prevEta[i][j] = eta[i][j]; |
83 | ||
84 | < | eta[i][j] += dt2 * instaVol * |
85 | < | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
86 | < | |
87 | < | vScale[i][j] = eta[i][j] + chi; |
88 | < | |
84 | > | for(i = 0; i < 3; i ++){ |
85 | > | for(j = 0; j < 3; j++){ |
86 | > | if( i == j) { |
87 | > | eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
88 | > | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
89 | } else { | |
90 | < | |
73 | < | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
74 | < | |
75 | < | vScale[i][j] = eta[i][j]; |
76 | < | |
90 | > | eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
91 | } | |
92 | } | |
93 | } | |
94 | + | } |
95 | ||
96 | < | for( i=0; i<nAtoms; i++ ){ |
97 | < | atomIndex = i * 3; |
98 | < | aMatIndex = i * 9; |
84 | < | |
85 | < | // velocity half step |
86 | < | |
87 | < | vi[0] = vel[atomIndex]; |
88 | < | vi[1] = vel[atomIndex+1]; |
89 | < | vi[2] = vel[atomIndex+2]; |
90 | < | |
91 | < | info->matVecMul3( vScale, vi, sc ); |
92 | < | |
93 | < | vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
94 | < | vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
95 | < | vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
96 | > | template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
97 | > | int i,j; |
98 | > | double vScale[3][3]; |
99 | ||
100 | < | vel[atomIndex] = vi[0] |
101 | < | vel[atomIndex+1] = vi[1]; |
102 | < | vel[atomIndex+2] = vi[2]; |
100 | > | for (i = 0; i < 3; i++ ) { |
101 | > | for (j = 0; j < 3; j++ ) { |
102 | > | vScale[i][j] = eta[i][j]; |
103 | > | |
104 | > | if (i == j) { |
105 | > | vScale[i][j] += chi; |
106 | > | } |
107 | > | } |
108 | > | } |
109 | > | |
110 | > | info->matVecMul3( vScale, vel, sc ); |
111 | > | } |
112 | ||
113 | < | // position whole step |
113 | > | template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
114 | > | int i,j; |
115 | > | double myVel[3]; |
116 | > | double vScale[3][3]; |
117 | ||
118 | < | ri[0] = pos[atomIndex]; |
119 | < | ri[1] = pos[atomIndex+1]; |
120 | < | ri[2] = pos[atomIndex+2]; |
118 | > | for (i = 0; i < 3; i++ ) { |
119 | > | for (j = 0; j < 3; j++ ) { |
120 | > | vScale[i][j] = eta[i][j]; |
121 | > | |
122 | > | if (i == j) { |
123 | > | vScale[i][j] += chi; |
124 | > | } |
125 | > | } |
126 | > | } |
127 | > | |
128 | > | for (j = 0; j < 3; j++) |
129 | > | myVel[j] = oldVel[3*index + j]; |
130 | ||
131 | < | info->wrapVector(ri); |
131 | > | info->matVecMul3( vScale, myVel, sc ); |
132 | > | } |
133 | ||
134 | < | info->matVecMul3( eta, ri, sc ); |
134 | > | template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
135 | > | int index, double sc[3]){ |
136 | > | int j; |
137 | > | double rj[3]; |
138 | ||
139 | < | pos[atomIndex] += dt * (vel[atomIndex] + sc[0]); |
140 | < | pos[atomIndex+1] += dt * (vel[atomIndex+1] + sc[1]); |
113 | < | pos[atomIndex+2] += dt * (vel[atomIndex+2] + sc[2]); |
114 | < | |
115 | < | if( atoms[i]->isDirectional() ){ |
139 | > | for(j=0; j<3; j++) |
140 | > | rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
141 | ||
142 | < | dAtom = (DirectionalAtom *)atoms[i]; |
143 | < | |
119 | < | // get and convert the torque to body frame |
120 | < | |
121 | < | Tb[0] = dAtom->getTx(); |
122 | < | Tb[1] = dAtom->getTy(); |
123 | < | Tb[2] = dAtom->getTz(); |
124 | < | |
125 | < | dAtom->lab2Body( Tb ); |
126 | < | |
127 | < | // get the angular momentum, and propagate a half step |
142 | > | info->matVecMul3( eta, rj, sc ); |
143 | > | } |
144 | ||
145 | < | ji[0] = dAtom->getJx(); |
130 | < | ji[1] = dAtom->getJy(); |
131 | < | ji[2] = dAtom->getJz(); |
132 | < | |
133 | < | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
134 | < | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
135 | < | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
136 | < | |
137 | < | // use the angular velocities to propagate the rotation matrix a |
138 | < | // full time step |
139 | < | |
140 | < | // rotate about the x-axis |
141 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
142 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
143 | < | |
144 | < | // rotate about the y-axis |
145 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
146 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
147 | < | |
148 | < | // rotate about the z-axis |
149 | < | angle = dt * ji[2] / dAtom->getIzz(); |
150 | < | this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
151 | < | |
152 | < | // rotate about the y-axis |
153 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
154 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
155 | < | |
156 | < | // rotate about the x-axis |
157 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
158 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
159 | < | |
160 | < | dAtom->setJx( ji[0] ); |
161 | < | dAtom->setJy( ji[1] ); |
162 | < | dAtom->setJz( ji[2] ); |
163 | < | } |
164 | < | |
165 | < | } |
145 | > | template<typename T> void NPTf<T>::scaleSimBox( void ){ |
146 | ||
147 | < | // Scale the box after all the positions have been moved: |
147 | > | int i,j,k; |
148 | > | double scaleMat[3][3]; |
149 | > | double eta2ij; |
150 | > | double bigScale, smallScale, offDiagMax; |
151 | > | double hm[3][3], hmnew[3][3]; |
152 | > | |
153 | ||
154 | + | |
155 | + | // Scale the box after all the positions have been moved: |
156 | + | |
157 | // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) | |
158 | // Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) | |
159 | < | |
160 | < | |
159 | > | |
160 | > | bigScale = 1.0; |
161 | > | smallScale = 1.0; |
162 | > | offDiagMax = 0.0; |
163 | > | |
164 | for(i=0; i<3; i++){ | |
165 | for(j=0; j<3; j++){ | |
166 | < | |
166 | > | |
167 | // Calculate the matrix Product of the eta array (we only need | |
168 | // the ij element right now): | |
169 | < | |
169 | > | |
170 | eta2ij = 0.0; | |
171 | for(k=0; k<3; k++){ | |
172 | eta2ij += eta[i][k] * eta[k][j]; | |
# | Line 187 | Line 178 | void NPTf::moveA() { | |
178 | // Taylor expansion for the exponential truncated at second order: | |
179 | scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; | |
180 | ||
181 | + | if (i != j) |
182 | + | if (fabs(scaleMat[i][j]) > offDiagMax) |
183 | + | offDiagMax = fabs(scaleMat[i][j]); |
184 | } | |
185 | + | |
186 | + | if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
187 | + | if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
188 | } | |
192 | – | |
193 | – | info->getBoxM(hm); |
194 | – | info->matMul3(hm, scaleMat, hmnew); |
195 | – | info->setBoxM(hmnew); |
189 | ||
190 | + | if ((bigScale > 1.1) || (smallScale < 0.9)) { |
191 | + | sprintf( painCave.errMsg, |
192 | + | "NPTf error: Attempting a Box scaling of more than 10 percent.\n" |
193 | + | " Check your tauBarostat, as it is probably too small!\n\n" |
194 | + | " scaleMat = [%lf\t%lf\t%lf]\n" |
195 | + | " [%lf\t%lf\t%lf]\n" |
196 | + | " [%lf\t%lf\t%lf]\n", |
197 | + | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
198 | + | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
199 | + | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
200 | + | painCave.isFatal = 1; |
201 | + | simError(); |
202 | + | } else if (offDiagMax > 0.1) { |
203 | + | sprintf( painCave.errMsg, |
204 | + | "NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" |
205 | + | " Check your tauBarostat, as it is probably too small!\n\n" |
206 | + | " scaleMat = [%lf\t%lf\t%lf]\n" |
207 | + | " [%lf\t%lf\t%lf]\n" |
208 | + | " [%lf\t%lf\t%lf]\n", |
209 | + | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
210 | + | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
211 | + | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
212 | + | painCave.isFatal = 1; |
213 | + | simError(); |
214 | + | } else { |
215 | + | info->getBoxM(hm); |
216 | + | info->matMul3(hm, scaleMat, hmnew); |
217 | + | info->setBoxM(hmnew); |
218 | + | } |
219 | } | |
220 | ||
221 | < | void NPTf::moveB( void ){ |
222 | < | int i,j, k; |
223 | < | int atomIndex; |
202 | < | DirectionalAtom* dAtom; |
203 | < | double Tb[3]; |
204 | < | double ji[3]; |
205 | < | double vi[3], sc[3]; |
206 | < | double instaTemp, instaVol; |
207 | < | double tt2, tb2; |
208 | < | double press[3][3], vScale[3][3]; |
209 | < | |
210 | < | tt2 = tauThermostat * tauThermostat; |
211 | < | tb2 = tauBarostat * tauBarostat; |
221 | > | template<typename T> bool NPTf<T>::etaConverged() { |
222 | > | int i; |
223 | > | double diffEta, sumEta; |
224 | ||
225 | < | instaTemp = tStats->getTemperature(); |
226 | < | tStats->getPressureTensor(press); |
227 | < | instaVol = tStats->getVolume(); |
216 | < | |
217 | < | // first evolve chi a half step |
225 | > | sumEta = 0; |
226 | > | for(i = 0; i < 3; i++) |
227 | > | sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
228 | ||
229 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
229 | > | diffEta = sqrt( sumEta / 3.0 ); |
230 | ||
231 | < | for (i = 0; i < 3; i++ ) { |
232 | < | for (j = 0; j < 3; j++ ) { |
223 | < | if (i == j) { |
231 | > | return ( diffEta <= etaTolerance ); |
232 | > | } |
233 | ||
234 | < | eta[i][j] += dt2 * instaVol * |
235 | < | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
234 | > | template<typename T> double NPTf<T>::getConservedQuantity(void){ |
235 | > | |
236 | > | double conservedQuantity; |
237 | > | double totalEnergy; |
238 | > | double thermostat_kinetic; |
239 | > | double thermostat_potential; |
240 | > | double barostat_kinetic; |
241 | > | double barostat_potential; |
242 | > | double trEta; |
243 | > | double a[3][3], b[3][3]; |
244 | ||
245 | < | vScale[i][j] = eta[i][j] + chi; |
229 | < | |
230 | < | } else { |
231 | < | |
232 | < | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
245 | > | totalEnergy = tStats->getTotalE(); |
246 | ||
247 | < | vScale[i][j] = eta[i][j]; |
248 | < | |
236 | < | } |
237 | < | } |
238 | < | } |
247 | > | thermostat_kinetic = fkBT * tt2 * chi * chi / |
248 | > | (2.0 * eConvert); |
249 | ||
250 | < | for( i=0; i<nAtoms; i++ ){ |
241 | < | atomIndex = i * 3; |
250 | > | thermostat_potential = fkBT* integralOfChidt / eConvert; |
251 | ||
252 | < | // velocity half step |
253 | < | |
254 | < | vi[0] = vel[atomIndex]; |
246 | < | vi[1] = vel[atomIndex+1]; |
247 | < | vi[2] = vel[atomIndex+2]; |
248 | < | |
249 | < | info->matVecMul3( vScale, vi, sc ); |
250 | < | |
251 | < | vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
252 | < | vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
253 | < | vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
252 | > | info->transposeMat3(eta, a); |
253 | > | info->matMul3(a, eta, b); |
254 | > | trEta = info->matTrace3(b); |
255 | ||
256 | < | vel[atomIndex] = vi[0] |
257 | < | vel[atomIndex+1] = vi[1]; |
257 | < | vel[atomIndex+2] = vi[2]; |
258 | < | |
259 | < | if( atoms[i]->isDirectional() ){ |
260 | < | |
261 | < | dAtom = (DirectionalAtom *)atoms[i]; |
262 | < | |
263 | < | // get and convert the torque to body frame |
264 | < | |
265 | < | Tb[0] = dAtom->getTx(); |
266 | < | Tb[1] = dAtom->getTy(); |
267 | < | Tb[2] = dAtom->getTz(); |
268 | < | |
269 | < | dAtom->lab2Body( Tb ); |
270 | < | |
271 | < | // get the angular momentum, and complete the angular momentum |
272 | < | // half step |
273 | < | |
274 | < | ji[0] = dAtom->getJx(); |
275 | < | ji[1] = dAtom->getJy(); |
276 | < | ji[2] = dAtom->getJz(); |
277 | < | |
278 | < | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
279 | < | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
280 | < | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
281 | < | |
282 | < | dAtom->setJx( ji[0] ); |
283 | < | dAtom->setJy( ji[1] ); |
284 | < | dAtom->setJz( ji[2] ); |
285 | < | } |
286 | < | } |
287 | < | } |
288 | < | |
289 | < | int NPTf::readyCheck() { |
290 | < | |
291 | < | // First check to see if we have a target temperature. |
292 | < | // Not having one is fatal. |
256 | > | barostat_kinetic = NkBT * tb2 * trEta / |
257 | > | (2.0 * eConvert); |
258 | ||
259 | < | if (!have_target_temp) { |
260 | < | sprintf( painCave.errMsg, |
296 | < | "NPTf error: You can't use the NPTf integrator\n" |
297 | < | " without a targetTemp!\n" |
298 | < | ); |
299 | < | painCave.isFatal = 1; |
300 | < | simError(); |
301 | < | return -1; |
302 | < | } |
259 | > | barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
260 | > | eConvert; |
261 | ||
262 | < | if (!have_target_pressure) { |
263 | < | sprintf( painCave.errMsg, |
306 | < | "NPTf error: You can't use the NPTf integrator\n" |
307 | < | " without a targetPressure!\n" |
308 | < | ); |
309 | < | painCave.isFatal = 1; |
310 | < | simError(); |
311 | < | return -1; |
312 | < | } |
262 | > | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
263 | > | barostat_kinetic + barostat_potential; |
264 | ||
265 | < | // We must set tauThermostat. |
266 | < | |
316 | < | if (!have_tau_thermostat) { |
317 | < | sprintf( painCave.errMsg, |
318 | < | "NPTf error: If you use the NPTf\n" |
319 | < | " integrator, you must set tauThermostat.\n"); |
320 | < | painCave.isFatal = 1; |
321 | < | simError(); |
322 | < | return -1; |
323 | < | } |
265 | > | // cout.width(8); |
266 | > | // cout.precision(8); |
267 | ||
268 | < | // We must set tauBarostat. |
269 | < | |
270 | < | if (!have_tau_barostat) { |
328 | < | sprintf( painCave.errMsg, |
329 | < | "NPTf error: If you use the NPTf\n" |
330 | < | " integrator, you must set tauBarostat.\n"); |
331 | < | painCave.isFatal = 1; |
332 | < | simError(); |
333 | < | return -1; |
334 | < | } |
268 | > | // cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
269 | > | // "\t" << thermostat_potential << "\t" << barostat_kinetic << |
270 | > | // "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
271 | ||
272 | < | // We need NkBT a lot, so just set it here: |
273 | < | |
338 | < | NkBT = (double)info->ndf * kB * targetTemp; |
339 | < | |
340 | < | return 1; |
272 | > | return conservedQuantity; |
273 | > | |
274 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |